Gaikwad S, Agrawal MY, Kaushik I, Ramachandran S, Srivastava SK. Immune checkpoint proteins: Signaling mechanisms and molecular interactions in cancer immunotherapy. Semin Cancer Biol. 2022;86:137–50. https://doi.org/10.1016/j.semcancer.2022.03.014.
Article PubMed CAS Google Scholar
Zhu C, Liu C, Wu Q, Sheng T, Zhou R, Ren E, Zhang R, Zhao Z, Shi J, Shen X, et al. Remolding the tumor microenvironment by bacteria augments adoptive T cell therapy in advanced-stage solid tumors. Signal Transduct Target Ther. 2024;9:307. https://doi.org/10.1038/s41392-024-02028-3.
Article PubMed PubMed Central CAS Google Scholar
Newman MJ. Invention and characterization of a systemically administered, attenuated and killed bacteria-based multiple immune receptor agonist for anti-tumor immunotherapy. Front Immunol. 2024;15:1462221. https://doi.org/10.3389/fimmu.2024.1462221.
Article PubMed PubMed Central CAS Google Scholar
Chen Z, Hu T, Zhou J, Gu X, Chen S, Qi Q, Wang L. Overview of tumor immunotherapy based on approved drugs. Life Sci. 2024;340: 122419. https://doi.org/10.1016/j.lfs.2024.122419.
Article PubMed CAS Google Scholar
Bader JE, Voss K, Rathmell JC. Targeting Metabolism to Improve the Tumor Microenvironment for Cancer Immunotherapy. Mol Cell. 2020;78:1019–33. https://doi.org/10.1016/j.molcel.2020.05.034.
Article PubMed PubMed Central CAS Google Scholar
Bai R, Cui J. Development of Immunotherapy Strategies Targeting Tumor Microenvironment Is Fiercely Ongoing. Front Immunol. 2022;13: 890166. https://doi.org/10.3389/fimmu.2022.890166.
Article PubMed PubMed Central CAS Google Scholar
Ahn R, Cui Y, White FM. Antigen discovery for the development of cancer immunotherapy. Semin Immunol. 2023;66: 101733. https://doi.org/10.1016/j.smim.2023.101733.
Article PubMed CAS Google Scholar
Leko V, Rosenberg SA. Identifying and Targeting Human Tumor Antigens for T Cell-Based Immunotherapy of Solid Tumors. Cancer Cell. 2020;38:454–72. https://doi.org/10.1016/j.ccell.2020.07.013.
Article PubMed PubMed Central CAS Google Scholar
Morad G, Helmink BA, Sharma P, Wargo JA. Hallmarks of response, resistance, and toxicity to immune checkpoint blockade. Cell. 2021;184:5309–37. https://doi.org/10.1016/j.cell.2021.09.020.
Article PubMed PubMed Central CAS Google Scholar
Goodman RS, Jung S, Balko JM, Johnson DB. Biomarkers of immune checkpoint inhibitor response and toxicity: Challenges and opportunities. Immunol Rev. 2023;318:157–66. https://doi.org/10.1111/imr.13249.
Article PubMed PubMed Central CAS Google Scholar
Wang SJ, Dougan SK, Dougan M. Immune mechanisms of toxicity from checkpoint inhibitors. Trends Cancer. 2023;9:543–53. https://doi.org/10.1016/j.trecan.2023.04.002.
Article PubMed PubMed Central CAS Google Scholar
Yang R, Cui J. Advances and applications of RNA vaccines in tumor treatment. Mol Cancer. 2024;23:226. https://doi.org/10.1186/s12943-024-02141-5.
Article PubMed PubMed Central CAS Google Scholar
Li J, Xiao Z, Wang D, Jia L, Nie S, Zeng X, Hu W. The screening, identification, design and clinical application of tumor-specific neoantigens for TCR-T cells. Mol Cancer. 2023;22:141. https://doi.org/10.1186/s12943-023-01844-5.
Article PubMed PubMed Central CAS Google Scholar
Lu D, Chen Y, Jiang M, Wang J, Li Y, Ma K, Sun W, Zheng X, Qi J, Jin W, et al. KRAS G12V neoantigen specific T cell receptor for adoptive T cell therapy against tumors. Nat Commun. 2023;14:6389. https://doi.org/10.1038/s41467-023-42010-1.
Article PubMed PubMed Central CAS Google Scholar
Fan T, Zhang M, Yang J, Zhu Z, Cao W, Dong C. Therapeutic cancer vaccines: advancements, challenges, and prospects. Signal Transduct Target Ther. 2023;8:450. https://doi.org/10.1038/s41392-023-01674-3.
Article PubMed PubMed Central CAS Google Scholar
Budczies J, Kazdal D, Menzel M, Beck S, Kluck K, Altburger C, Schwab C, Allgauer M, Ahadova A, Kloor M, et al. Tumour mutational burden: clinical utility, challenges and emerging improvements. Nat Rev Clin Oncol. 2024;21:725–42. https://doi.org/10.1038/s41571-024-00932-9.
Keenan TE, Burke KP, Van Allen EM. Genomic correlates of response to immune checkpoint blockade. Nat Med. 2019;25:389–402. https://doi.org/10.1038/s41591-019-0382-x.
Article PubMed PubMed Central CAS Google Scholar
Yarchoan M, Hopkins A, Jaffee EM. Tumor Mutational Burden and Response Rate to PD-1 Inhibition. N Engl J Med. 2017;377:2500–1. https://doi.org/10.1056/NEJMc1713444.
Article PubMed PubMed Central Google Scholar
Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, Lee W, Yuan J, Wong P, Ho TS, et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science. 2015;348:124–8. https://doi.org/10.1126/science.aaa1348.
Article PubMed PubMed Central CAS Google Scholar
Marabelle A, Fakih M, Lopez J, Shah M, Shapira-Frommer R, Nakagawa K, Chung HC, Kindler HL, Lopez-Martin JA, Miller WH Jr, et al. Association of tumour mutational burden with outcomes in patients with advanced solid tumours treated with pembrolizumab: prospective biomarker analysis of the multicohort, open-label, phase 2 KEYNOTE-158 study. Lancet Oncol. 2020;21:1353–65. https://doi.org/10.1016/S1470-2045(20)30445-9.
Article PubMed CAS Google Scholar
Sholl LM, Hirsch FR, Hwang D, Botling J, Lopez-Rios F, Bubendorf L, Mino-Kenudson M, Roden AC, Beasley MB, Borczuk A, et al. The Promises and Challenges of Tumor Mutation Burden as an Immunotherapy Biomarker: A Perspective from the International Association for the Study of Lung Cancer Pathology Committee. J Thorac Oncol. 2020;15:1409–24. https://doi.org/10.1016/j.jtho.2020.05.019.
Article PubMed PubMed Central CAS Google Scholar
Huber F, Arnaud M, Stevenson BJ, Michaux J, Benedetti F, Thevenet J, Bobisse S, Chiffelle J, Gehert T, Muller M, et al. A comprehensive proteogenomic pipeline for neoantigen discovery to advance personalized cancer immunotherapy. Nat Biotechnol. 2024. https://doi.org/10.1038/s41587-024-02420-y.
Article PubMed PubMed Central Google Scholar
Hu C, Zhao L, Liu W, Fan S, Liu J, Liu Y, Liu X, Shu L, Liu X, Liu P, et al. Genomic profiles and their associations with TMB, PD-L1 expression, and immune cell infiltration landscapes in synchronous multiple primary lung cancers. J Immunother Cancer. 2021;9. https://doi.org/10.1136/jitc-2021-003773.
Palmeri M, Mehnert J, Silk AW, Jabbour SK, Ganesan S, Popli P, Riedlinger G, Stephenson R, de Meritens AB, Leiser A, et al. Real-world application of tumor mutational burden-high (TMB-high) and microsatellite instability (MSI) confirms their utility as immunotherapy biomarkers. ESMO Open. 2022;7: 100336. https://doi.org/10.1016/j.esmoop.2021.100336.
Article PubMed CAS Google Scholar
Schumacher TN, Schreiber RD. Neoantigens in cancer immunotherapy. Science. 2015;348:69–74. https://doi.org/10.1126/science.aaa4971.
Article PubMed CAS Google Scholar
Zamora AE, Crawford JC, Thomas PG. Hitting the Target: How T Cells Detect and Eliminate Tumors. J Immunol. 2018;200:392–9. https://doi.org/10.4049/jimmunol.1701413.
Comments (0)