The role of neoantigens and tumor mutational burden in cancer immunotherapy: advances, mechanisms, and perspectives

Gaikwad S, Agrawal MY, Kaushik I, Ramachandran S, Srivastava SK. Immune checkpoint proteins: Signaling mechanisms and molecular interactions in cancer immunotherapy. Semin Cancer Biol. 2022;86:137–50. https://doi.org/10.1016/j.semcancer.2022.03.014.

Article  PubMed  CAS  Google Scholar 

Zhu C, Liu C, Wu Q, Sheng T, Zhou R, Ren E, Zhang R, Zhao Z, Shi J, Shen X, et al. Remolding the tumor microenvironment by bacteria augments adoptive T cell therapy in advanced-stage solid tumors. Signal Transduct Target Ther. 2024;9:307. https://doi.org/10.1038/s41392-024-02028-3.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Newman MJ. Invention and characterization of a systemically administered, attenuated and killed bacteria-based multiple immune receptor agonist for anti-tumor immunotherapy. Front Immunol. 2024;15:1462221. https://doi.org/10.3389/fimmu.2024.1462221.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Chen Z, Hu T, Zhou J, Gu X, Chen S, Qi Q, Wang L. Overview of tumor immunotherapy based on approved drugs. Life Sci. 2024;340: 122419. https://doi.org/10.1016/j.lfs.2024.122419.

Article  PubMed  CAS  Google Scholar 

Bader JE, Voss K, Rathmell JC. Targeting Metabolism to Improve the Tumor Microenvironment for Cancer Immunotherapy. Mol Cell. 2020;78:1019–33. https://doi.org/10.1016/j.molcel.2020.05.034.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Bai R, Cui J. Development of Immunotherapy Strategies Targeting Tumor Microenvironment Is Fiercely Ongoing. Front Immunol. 2022;13: 890166. https://doi.org/10.3389/fimmu.2022.890166.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Ahn R, Cui Y, White FM. Antigen discovery for the development of cancer immunotherapy. Semin Immunol. 2023;66: 101733. https://doi.org/10.1016/j.smim.2023.101733.

Article  PubMed  CAS  Google Scholar 

Leko V, Rosenberg SA. Identifying and Targeting Human Tumor Antigens for T Cell-Based Immunotherapy of Solid Tumors. Cancer Cell. 2020;38:454–72. https://doi.org/10.1016/j.ccell.2020.07.013.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Morad G, Helmink BA, Sharma P, Wargo JA. Hallmarks of response, resistance, and toxicity to immune checkpoint blockade. Cell. 2021;184:5309–37. https://doi.org/10.1016/j.cell.2021.09.020.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Goodman RS, Jung S, Balko JM, Johnson DB. Biomarkers of immune checkpoint inhibitor response and toxicity: Challenges and opportunities. Immunol Rev. 2023;318:157–66. https://doi.org/10.1111/imr.13249.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Wang SJ, Dougan SK, Dougan M. Immune mechanisms of toxicity from checkpoint inhibitors. Trends Cancer. 2023;9:543–53. https://doi.org/10.1016/j.trecan.2023.04.002.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Yang R, Cui J. Advances and applications of RNA vaccines in tumor treatment. Mol Cancer. 2024;23:226. https://doi.org/10.1186/s12943-024-02141-5.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Li J, Xiao Z, Wang D, Jia L, Nie S, Zeng X, Hu W. The screening, identification, design and clinical application of tumor-specific neoantigens for TCR-T cells. Mol Cancer. 2023;22:141. https://doi.org/10.1186/s12943-023-01844-5.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Lu D, Chen Y, Jiang M, Wang J, Li Y, Ma K, Sun W, Zheng X, Qi J, Jin W, et al. KRAS G12V neoantigen specific T cell receptor for adoptive T cell therapy against tumors. Nat Commun. 2023;14:6389. https://doi.org/10.1038/s41467-023-42010-1.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Fan T, Zhang M, Yang J, Zhu Z, Cao W, Dong C. Therapeutic cancer vaccines: advancements, challenges, and prospects. Signal Transduct Target Ther. 2023;8:450. https://doi.org/10.1038/s41392-023-01674-3.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Budczies J, Kazdal D, Menzel M, Beck S, Kluck K, Altburger C, Schwab C, Allgauer M, Ahadova A, Kloor M, et al. Tumour mutational burden: clinical utility, challenges and emerging improvements. Nat Rev Clin Oncol. 2024;21:725–42. https://doi.org/10.1038/s41571-024-00932-9.

Article  PubMed  Google Scholar 

Keenan TE, Burke KP, Van Allen EM. Genomic correlates of response to immune checkpoint blockade. Nat Med. 2019;25:389–402. https://doi.org/10.1038/s41591-019-0382-x.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Yarchoan M, Hopkins A, Jaffee EM. Tumor Mutational Burden and Response Rate to PD-1 Inhibition. N Engl J Med. 2017;377:2500–1. https://doi.org/10.1056/NEJMc1713444.

Article  PubMed  PubMed Central  Google Scholar 

Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, Lee W, Yuan J, Wong P, Ho TS, et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science. 2015;348:124–8. https://doi.org/10.1126/science.aaa1348.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Marabelle A, Fakih M, Lopez J, Shah M, Shapira-Frommer R, Nakagawa K, Chung HC, Kindler HL, Lopez-Martin JA, Miller WH Jr, et al. Association of tumour mutational burden with outcomes in patients with advanced solid tumours treated with pembrolizumab: prospective biomarker analysis of the multicohort, open-label, phase 2 KEYNOTE-158 study. Lancet Oncol. 2020;21:1353–65. https://doi.org/10.1016/S1470-2045(20)30445-9.

Article  PubMed  CAS  Google Scholar 

Sholl LM, Hirsch FR, Hwang D, Botling J, Lopez-Rios F, Bubendorf L, Mino-Kenudson M, Roden AC, Beasley MB, Borczuk A, et al. The Promises and Challenges of Tumor Mutation Burden as an Immunotherapy Biomarker: A Perspective from the International Association for the Study of Lung Cancer Pathology Committee. J Thorac Oncol. 2020;15:1409–24. https://doi.org/10.1016/j.jtho.2020.05.019.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Huber F, Arnaud M, Stevenson BJ, Michaux J, Benedetti F, Thevenet J, Bobisse S, Chiffelle J, Gehert T, Muller M, et al. A comprehensive proteogenomic pipeline for neoantigen discovery to advance personalized cancer immunotherapy. Nat Biotechnol. 2024. https://doi.org/10.1038/s41587-024-02420-y.

Article  PubMed  PubMed Central  Google Scholar 

Hu C, Zhao L, Liu W, Fan S, Liu J, Liu Y, Liu X, Shu L, Liu X, Liu P, et al. Genomic profiles and their associations with TMB, PD-L1 expression, and immune cell infiltration landscapes in synchronous multiple primary lung cancers. J Immunother Cancer. 2021;9. https://doi.org/10.1136/jitc-2021-003773.

Palmeri M, Mehnert J, Silk AW, Jabbour SK, Ganesan S, Popli P, Riedlinger G, Stephenson R, de Meritens AB, Leiser A, et al. Real-world application of tumor mutational burden-high (TMB-high) and microsatellite instability (MSI) confirms their utility as immunotherapy biomarkers. ESMO Open. 2022;7: 100336. https://doi.org/10.1016/j.esmoop.2021.100336.

Article  PubMed  CAS  Google Scholar 

Schumacher TN, Schreiber RD. Neoantigens in cancer immunotherapy. Science. 2015;348:69–74. https://doi.org/10.1126/science.aaa4971.

Article  PubMed  CAS  Google Scholar 

Zamora AE, Crawford JC, Thomas PG. Hitting the Target: How T Cells Detect and Eliminate Tumors. J Immunol. 2018;200:392–9. https://doi.org/10.4049/jimmunol.1701413.

Article  PubMed  CAS 

Comments (0)

No login
gif