Reactivation of Multipotency in the Mammary Gland – a Ripple in the Pond and a Turn of the Tide

Wilkins MHF, Stokes AR, Wilson HR. Molecular Structure of Nucleic Acids: Molecular Structure of Deoxypentose Nucleic Acids. Nature. 1953. https://doi.org/10.1038/171738a0.

Article  PubMed  Google Scholar 

Franklin RE, Gosling RG. Molecular Configuration in Sodium Thymonucleate. Nature. 1953. https://doi.org/10.1038/171740a0.

Article  PubMed  Google Scholar 

Watson JD, Crick FHC. Molecular Structure of Nucleic Acids: a Structure for Deoxyribose Nucleic Acid. Nature. 1953. https://doi.org/10.1038/171737a0.

Article  PubMed  Google Scholar 

Wuidart A, et al. Early Lineage Segregation of Multipotent Embryonic Mammary Gland Progenitors. Nat Cell Biol. 2018. https://doi.org/10.1038/s41556-018-0095-2.

Article  PubMed  PubMed Central  Google Scholar 

Lilja AM, et al. Clonal Analysis of Notch1-expressing Cells Reveals the Existence of Unipotent Stem Cells that Retain Long-term Plasticity in the Embryonic Mammary Gland. Nat Cell Biol. 2018;20:677.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Koren S, et al. PIK3CAH1047R Induces Multipotency and Multi-lineage Mammary Tumours. Nature. 2015. https://doi.org/10.1038/nature14669.

Article  PubMed  PubMed Central  Google Scholar 

Molyneux G, et al. BRCA1 Basal-like Breast Cancers Originate From Luminal Epithelial Progenitors and not From Basal Stem Cells. Cell Stem Cell. 2010. https://doi.org/10.1016/j.stem.2010.07.010.

Article  PubMed  Google Scholar 

Hein SM, et al. Luminal Epithelial Cells Within the Mammary Gland can Produce Basal Cells Upon Oncogenic Stress. Oncogene. 2016;35:1461.

Article  CAS  PubMed  Google Scholar 

Van Keymeulen A, et al. Reactivation of Multipotency by Oncogenic PIK3CA Induces Breast Tumour Heterogeneity. Nature. 2015. https://doi.org/10.1038/nature14665.

Article  PubMed  Google Scholar 

Jehanno C, Vulin M, Richina V, Richina F. Phenotypic Plasticity During Metastatic Colonization. Trends Cell Biol. 2022:1–14. https://doi.org/10.1016/j.tcb.2022.03.007.

Koren S, Bentires-Alj M. Breast Tumor Heterogeneity: Source of Fitness, Hurdle for Therapy. Mol Cell. 2015. Preprint at https://doi.org/10.1016/j.molcel.2015.10.031.

Article  PubMed  PubMed Central  Google Scholar 

Visvader JE, Stingl J. Mammary Stem Cells and the Differentiation Hierarchy: Current Status and Perspectives. Genes Dev. 2014. Preprint at https://doi.org/10.1101/gad.242511.114.

Article  PubMed  PubMed Central  Google Scholar 

Deome KB, Faulkin LJ, Bern HA, Blair PB. Development of Mammary Tumors From Hyperplastic Alveolar Nodules Transplanted Into Gland-free Mammary Fat Pads of Female C3H Mice*. http://aacrjournals.org/cancerres/article-pdf/19/5/515/2374297/crs0190050515.pdf.

Shackleton M, et al. Generation of a Functional Mammary Gland From a Single Stem Cell. Nature. 2006. https://doi.org/10.1038/nature04372.

Article  PubMed  Google Scholar 

Smith GH, Medina D. Re-evaluation of Mammary Stem Cell Biology Based on in Vivo Transplantation. Breast Cancer Res. 2008;10. Preprint at https://doi.org/10.1186/bcr1856.

Stingl J, et al. Purification and Unique Properties of Mammary Epithelial Stem Cells. Nature. 2006. https://doi.org/10.1038/nature04496.

Article  PubMed  Google Scholar 

Sleeman KE, et al. Dissociation of Estrogen Receptor Expression and in Vivo Stem Cell Activity in the Mammary Gland. J Cell Biol. 2007. https://doi.org/10.1083/jcb.200604065.

Article  PubMed  PubMed Central  Google Scholar 

Van Keymeulen A, et al. Distinct Stem Cells Contribute to Mammary Gland Development and Maintenance. Nature. 2011. https://doi.org/10.1038/nature10573.

Article  PubMed  Google Scholar 

Van Amerongen R, Bowman AN, Nusse R. Developmental Stage and Time Dictate the Fate of Wnt/β-catenin- Responsive Stem Cells in the Mammary Gland. Cell Stem Cell. 2012. https://doi.org/10.1016/j.stem.2012.05.023.

Article  PubMed  Google Scholar 

Fu NY, Nolan E, Lindeman GJ, Visvader JE. Stem Cells and the Differentiation Hierarchy in Mammary Gland Development. Physiol Rev. 2020;100:489–523.

Article  CAS  PubMed  Google Scholar 

Rios AC, Fu NY, Lindeman GJ, Visvader JE. In Situ Identification of Bipotent Stem Cells in the Mammary Gland. Nature. 2014. https://doi.org/10.1038/nature12948.

Article  PubMed  Google Scholar 

De Visser KE, et al. Developmental Stage-specific Contribution of LGR5+ Cells to Basal and Luminal Epithelial Lineages in the Postnatal Mammary Gland. J Pathol. 2012. https://doi.org/10.1002/path.4096.

Article  PubMed  Google Scholar 

Chakrabarti R, et al. Notch Ligand Dll1 Mediates Cross-talk Between Mammary Stem Cells and the Macrophageal Niche. Science. 2018. https://doi.org/10.1126/science.aan4153.

Article  PubMed  PubMed Central  Google Scholar 

Wang D, et al. Identification of Multipotent Mammary Stemcells by Protein C Receptor Expression. Nature. 2015. https://doi.org/10.1038/nature13851.

Article  PubMed  PubMed Central  Google Scholar 

Song W, et al. Hormones Induce the Formation of Luminal-derived Basal Cells in the Mammary Gland. Cell Res. 2019. https://doi.org/10.1038/s41422-018-0137-0.

Article  PubMed  PubMed Central  Google Scholar 

Jiang C, et al. Collagen Signaling and Matrix Stiffness Regulate Multipotency in Glandular Epithelial Stem Cells in Mice. Nature Commun. 2024;15:10482.

Article  CAS  Google Scholar 

Centonze A, et al. Heterotypic Cell–cell Communication Regulates Glandular Stem Cell Multipotency. Nature. 2020;584:608.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tao L, Xiang D, Xie Y, Bronson RT, Li Z. Induced P53 Loss in Mouse Luminal Cells Causes Clonal Expansion and Development of Mammary Tumours. Nat Commun. 2017. https://doi.org/10.1038/ncomms14431.

Article  PubMed  PubMed Central  Google Scholar 

Christin JR, et al. Stem Cell Determinant SOX9 Promotes Lineage Plasticity and Progression in Basal-like Breast Cancer. Cell Rep. 2020;31:107742.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bach K, et al. Differentiation Dynamics of Mammary Epithelial Cells Revealed by Single-cell RNA Sequencing. Nat Commun. 2017. https://doi.org/10.1038/s41467-017-02001-5.

Article  PubMed  PubMed Central  Google Scholar 

Giraddi RR, et al. Single-cell Transcriptomes Distinguish Stem Cell State Changes and Lineage Specification Programs in Early Mammary Gland Development. Cell Rep. 2018. https://doi.org/10.1016/j.celrep.2018.07.025.

Article  PubMed  PubMed Central  Google Scholar 

Pal B, et al. Construction of Developmental Lineage Relationships in the Mouse Mammary Gland by Single-cell RNA Profiling. Nat Commun. 2017. https://doi.org/10.1038/s41467-017-01560-x.

Article  PubMed  PubMed Central  Google Scholar 

Dravis C, et al. Epigenetic and Transcriptomic Profiling of Mammary Gland Development and Tumor Models Disclose Regulators of Cell State Plasticity. Cancer Cell. 2018. https://doi.org/10.1016/j.ccell.2018.08.001.

Article  PubMed  PubMed Central  Google Scholar 

van de Moosdijk AAA, Fu NY, Rios AC, Visvader JE, van Amerongen R. Lineage Tracing of Mammary Stem and Progenitor Cells. Methods Mol Biol. 2017;1501:291.

Article  PubMed 

Comments (0)

No login
gif