Neuroferroptosis in health and diseases

Wong, F. K. & Marin, O. Developmental cell death in the cerebral cortex. Annu. Rev. Cell Dev. Biol. 35, 523–542 (2019).

Article  CAS  PubMed  Google Scholar 

Kole, A. J., Annis, R. P. & Deshmukh, M. Mature neurons: equipped for survival. Cell Death Dis. 4, e689 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ostrom, Q. T., Francis, S. S. & Barnholtz-Sloan, J. S. Epidemiology of brain and other CNS tumors. Curr. Neurol. Neurosci. Rep. 21, 68 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Herdy, J. R., Mertens, J. & Gage, F. H. Neuronal senescence may drive brain aging. Science 384, 1404–1406 (2024).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wong, F. K. et al. Pyramidal cell regulation of interneuron survival sculpts cortical networks. Nature 557, 668–673 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alves, F., Lane, D., Nguyen, T. P. M., Bush, A. I. & Ayton, S. In defence of ferroptosis. Signal. Transduct. Target. Ther. 10, 2 (2025).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dixon, S. J. et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149, 1060–1072 (2012). This paper coins ferroptosis as a unique cell death pathway.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang, W. S. et al. Regulation of ferroptotic cancer cell death by GPX4. Cell 156, 317–331 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Seiler, A. et al. Glutathione peroxidase 4 senses and translates oxidative stress into 12/15-lipoxygenase dependent- and AIF-mediated cell death. Cell Metab. 8, 237–248 (2008). This early paper identifies loss of GPX4 as causing a unique cell death pathway.

Article  CAS  PubMed  Google Scholar 

Conrad, M. & Pratt, D. A. The chemical basis of ferroptosis. Nat. Chem. Biol. 15, 1137–1147 (2019).

Article  CAS  PubMed  Google Scholar 

Do, Q. & Xu, L. How do different lipid peroxidation mechanisms contribute to ferroptosis? Cell Rep. Phys. Sci. 4, 101683 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ramos, P. et al. Iron levels in the human brain: a post-mortem study of anatomical region differences and age-related changes. J. Trace Elem. Med. Biol. 28, 13–17 (2014).

Article  CAS  PubMed  Google Scholar 

Levi, S. & Rovida, E. The role of iron in mitochondrial function. Biochim Biophys Acta 1790, 629–636 (2009).

Article  CAS  PubMed  Google Scholar 

Masini, A. et al. Dietary iron deficiency in the rat. II. Recovery from energy metabolism derangement of the hepatic tissue by iron therapy. Biochim Biophys Acta 1188, 53–57 (1994).

Article  CAS  PubMed  Google Scholar 

Halliwell, B. Oxidative stress and neurodegeneration: where are we now? J. Neurochem. 97, 1634–1658 (2006).

Article  CAS  PubMed  Google Scholar 

Zucca, F. A. et al. Neuromelanin and iron in human locus coeruleus and substantia nigra during aging: consequences for neuronal vulnerability. J. Neural Transm. 113, 757–767 (2006).

Article  CAS  PubMed  Google Scholar 

Devos, D. et al. Trial of deferiprone in Parkinson’s disease. N. Engl. J. Med. 387, 2045–2055 (2022).

Article  CAS  PubMed  Google Scholar 

Tian, R. et al. Genome-wide CRISPRi/a screens in human neurons link lysosomal failure to ferroptosis. Nat. Neurosci. 24, 1020–1034 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Reinert, A., Morawski, M., Seeger, J., Arendt, T. & Reinert, T. Iron concentrations in neurons and glial cells with estimates on ferritin concentrations. BMC Neurosci. 20, 25 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Liddell, J. R. et al. Microglial ferroptotic stress causes non-cell autonomous neuronal death. Mol. Neurodegener. 19, 14 (2024). This study demonstrates how ferroptosis in microglia can impact on astrocytes and neurons.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Faux, N. G. et al. An anemia of Alzheimer’s disease. Mol. Psychiatry 19, 1227–1234 (2014).

Article  CAS  PubMed  Google Scholar 

Hogarth, P. Neurodegeneration with brain iron accumulation: diagnosis and management. J. Mov. Disord. 8, 1–13 (2015).

Article  PubMed  PubMed Central  Google Scholar 

O’Brien, J. S. & Sampson, E. L. Fatty acid and fatty aldehyde composition of the major brain lipids in normal human gray matter, white matter, and myelin. J. Lipid Res. 6, 545–551 (1965).

Article  PubMed  Google Scholar 

Osetrova, M. et al. Lipidome atlas of the adult human brain. Nat. Commun. 15, 4455 (2024).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bazinet, R. P. & Laye, S. Polyunsaturated fatty acids and their metabolites in brain function and disease. Nat. Rev. Neurosci. 15, 771–785 (2014).

Article  CAS  PubMed  Google Scholar 

Liang, D. et al. Ferroptosis surveillance independent of GPX4 and differentially regulated by sex hormones. Cell 186, 2748–2764.e22 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Reed, A. et al. LPCAT3 inhibitors remodel the polyunsaturated phospholipid content of human cells and protect from ferroptosis. ACS Chem. Biol. 17, 1607–1618 (2022).

Article  CAS  PubMed  Google Scholar 

Magtanong, L. et al. Exogenous monounsaturated fatty acids promote a ferroptosis-resistant cell state. Cell Chem. Biol. https://doi.org/10.1016/j.chembiol.2018.11.016 (2018).

Doll, S. et al. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat. Chem. Biol. 13, 91–98 (2017).

Article  CAS  PubMed  Google Scholar 

Friedmann Angeli, J. P. et al. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat. Cell Biol. 16, 1180–1191 (2014).

Article  CAS  PubMed  Google Scholar 

Jakaria, M., Belaidi, A. A., Bush, A. I. & Ayton, S. Vitamin A metabolites inhibit ferroptosis. Biomed. Pharmacother. 164, 114930 (2023).

Article  CAS  PubMed  Google Scholar 

Mishima, E. et al. A non-canonical vitamin K cycle is a potent ferroptosis suppressor. Nature 608, 778–783 (2022).

Article  CAS

Comments (0)

No login
gif