On analogies in vertebrate and insect visual systems

Rádl, E. Untersuchungen über den bau des tractus opticus von squilla mantis und von aderen Arthropoden. Sitzungsberichte der königlichen Böhmischen Gesellschaft der Wissenschaften. Math.-naturwissenschaftliche Classe. 551–598 (1899).

Cajal, S. R. Y. & Sánchez, D. Contribución al Conocimiento de los Centros Nerviosos de los Insectos (Imprenta de Hijos de Nicolás Moya, 1915).

Randel, N. & Jékely, G. Phototaxis and the origin of visual eyes. Philos. Trans. R. Soc. B Biol. Sci. 371, 20150042 (2016).

Article  Google Scholar 

Joly, J.-S., Recher, G., Brombin, A., Ngo, K. & Hartenstein, V. A conserved developmental mechanism builds complex visual systems in insects and vertebrates. Curr. Biol. 26, R1001–R1009 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zipursky, S. L. & Sanes, J. R. Chemoaffinity revisited: Dscams, protocadherins, and neural circuit assembly. Cell 143, 343–353 (2010).

Article  CAS  Google Scholar 

Borst, A. & Helmstaedter, M. Common circuit design in fly and mammalian motion vision. Nat. Neurosci. 18, 1067–1076 (2015).

Article  CAS  PubMed  Google Scholar 

Clark, D. A. & Demb, J. B. Parallel computations in insect and mammalian visual motion processing. Curr. Biol. 26, R1062–R1072 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sanes, J. R. & Zipursky, S. L. Design principles of insect and vertebrate visual systems. Neuron 66, 15–36 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Naumann, E. A., Kampff, A. R., Prober, D. A., Schier, A. F. & Engert, F. Monitoring neural activity with bioluminescence during natural behavior. Nat. Neurosci. 13, 513–520 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Raji, J. I. & Potter, C. J. The number of neurons in Drosophila and mosquito brains. PLoS ONE 16, 1–11 (2021).

Article  Google Scholar 

Baden, T., Euler, T. & Berens, P. Understanding the retinal basis of vision across species. Nat. Rev. Neurosci. 21, 5–20 (2020).

Article  CAS  PubMed  Google Scholar 

Kerschensteiner, D. Feature detection by retinal ganglion cells. Annu. Rev. Vis. Sci. 8, 135–169 (2022).

Article  PubMed  Google Scholar 

Masland, R. H. The neuronal organization of the retina. Neuron 76, 266–280 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Behnia, R. & Desplan, C. Visual circuits in flies: beginning to see the whole picture. Curr. Opin. Neurobiol. 34, 125–132 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Currier, T. A., Pang, M. M. & Clandinin, T. R. Visual processing in the fly, from photoreceptors to behavior. Genetics 224, iyad064 (2023).

Article  PubMed  PubMed Central  Google Scholar 

Ryu, L., Kim, S. Y. & Kim, A. J. From photons to behaviors: neural implementations of visual behaviors in Drosophila. Front. Neurosci. 16, 883640 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Schnaitmann, C., Pagni, M. & Reiff, D. F. Color vision in insects: insights from Drosophila. J. Comp. Physiol. A 206, 183–198 (2020).

Article  Google Scholar 

Yang, H. H. & Clandinin, T. R. Elementary motion detection in Drosophila: algorithms and mechanisms. Annu. Rev. Vis. Sci. 4, 143–163 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Baden, T. Ancestral photoreceptor diversity as the basis of visual behaviour. Nat Ecol. Evol. https://doi.org/10.1038/s41559-023-02291-7 (2024).

van der Kooi, C. J., Stavenga, D. G., Arikawa, K., Belušič, G. & Kelber, A. Evolution of insect color vision: from spectral sensitivity to visual ecology. Annu. Rev. Entomol. 66, 435–461 (2021).

Article  PubMed  Google Scholar 

Morshedian, A. & Fain, G. L. The evolution of rod photoreceptors. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160074 (2017).

Article  Google Scholar 

Friedrich, M., Wood, E. J. & Wu, M. Developmental evolution of the insect retina: insights from standardized numbering of homologous photoreceptors. J. Exp. Zool. B Mol. Dev. Evol. 316B, 484–499 (2011).

Article  Google Scholar 

Zimmermann, M. J. Y. et al. Zebrafish differentially process color across visual space to match natural scenes. Curr. Biol. 28, 2018–2032.e5 (2018).

Article  CAS  PubMed  Google Scholar 

Baden, T. et al. A tale of two retinal domains: near-optimal sampling of achromatic contrasts in natural scenes through asymmetric photoreceptor distribution. Neuron 80, 1206–1217 (2013).

Article  CAS  PubMed  Google Scholar 

Wernet, M. F., Perry, M. W. & Desplan, C. The evolutionary diversity of insect retinal mosaics: common design principles and emerging molecular logic. Trends Genet. 31, 316–328 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Meinertzhagen, I. A. & O’Neil, S. D. Synaptic organization of columnar elements in the lamina of the wild type in Drosophila melanogaster. J. Comp. Neurol. 305, 232–263 (1991).

Article  CAS  PubMed  Google Scholar 

Takemura, S., Lu, Z. & Meinertzhagen, I. A. Synaptic circuits of the Drosophila optic lobe: the input terminals to the medulla. J. Comp. Neurol. 509, 493–513 (2008).

Article  PubMed  PubMed Central  Google Scholar 

Shekhar, K. et al. Comprehensive classification of retinal bipolar neurons by single-cell transcriptomics. Cell 166, 1308–1323.e30 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hellevik, A. M. et al. Ancient origin of the rod bipolar cell pathway in the vertebrate retina. Nat. Ecol. Evol. 8, 1165–1179 (2024).

Article  PubMed  Google Scholar 

Li, Y. N., Tsujimura, T., Kawamura, S. & Dowling, J. E. Bipolar cell–photoreceptor connectivity in the zebrafish (Danio rerio) retina. J. Comp. Neurol. 520, 3786–3802 (2012).

Article  PubMed  PubMed Central  Google Scholar 

Fischbach, K. F. & Dittrich, A. P. M. The optic lobe of Drosophila melanogaster. I. A Golgi analysis of wild-type structure. Cell Tissue Res. 258, 441–475 (1989).

Article  Google Scholar 

Hamanaka, Y., Shibasaki, H., Kinoshita, M. & Arikawa, K. Neurons innervating the lamina in the butterfly, Papilio xuthus. J. Comp. Physiol. A 199, 341–351 (2013).

Article  CAS  Google Scholar 

Chapot, C. A., Euler, T. & Schubert, T. How do horizontal cells ‘talk’ to cone photoreceptors? Different levels of complexity at the cone–horizontal cell synapse. J. Physiol. 595, 5495–5506 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Clark, D. A., Bursztyn, L., Horowitz, M. A., Schnitzer, M. J. & Clandinin, T. R. Defining the computational structure of the motion detector in Drosophila. Neuron 70, 1165–1177 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Franke, K. et al. Inhibition decorrelates visual feature representations in the inner retina. Nature 542, 439–444 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Silies, M. et al. Modular use of peripheral input channels tunes motion-detecting circuitry. Neuron 79

Comments (0)

No login
gif