Boethius, A. Something rotten in Scandinavia: the world’s earliest evidence of fermentation. J. Archaeol. Sci. 66, 169–180 (2016).
McGovern, P. E. et al. Fermented beverages of pre- and proto-historic China. Proc. Natl Acad. Sci. USA 101, 17593–17598 (2004).
Article CAS PubMed PubMed Central Google Scholar
Miller, E. R. et al. Establishment limitation constrains the abundance of lactic acid bacteria in the Napa cabbage phyllosphere. Appl. Environ. Microbiol. 85, e00269–19 (2019).
Article CAS PubMed PubMed Central Google Scholar
Ma, Y. et al. Microbiota dynamics and volatile metabolite generation during sausage fermentation. Food Chem. 423, 136297 (2023).
Article CAS PubMed Google Scholar
Porter, J. R. Louis Pasteur. achievements and disappointments. Bacteriol. Rev. 25, 389–403 (1961).
Article CAS PubMed PubMed Central Google Scholar
Marco, M. L. et al. The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on fermented foods. Nat. Rev. Gastroenterol. Hepatol. 18, 196–208 (2021).
Article PubMed PubMed Central Google Scholar
Steinkraus, K. H. in Handbook of Food and Beverage Fermentation Technology (eds Hui, Y. H. et al.) 1–8 (Marcel Dekker, 2004).
Beresford, T. P., Fitzsimons, N. A., Brennan, N. L. & Cogan, T. M. Recent advances in cheese microbiology. Int. Dairy J. 11, 259–274 (2001).
Venturini Copetti, M. Yeasts and molds in fermented food production: an ancient bioprocess. Curr. Opin. Food Sci. 25, 57–61 (2019).
Benítez-Cabello, A., Delgado, A. M. & Quintas, C. Main challenges expected from the impact of climate change on microbial biodiversity of table olives: current status and trends. Foods 12, 3712 (2023).
Article PubMed PubMed Central Google Scholar
Choudoir, M. J., Barberán, A., Menninger, H. L., Dunn, R. R. & Fierer, N. Variation in range size and dispersal capabilities of microbial taxa. Ecology 99, 322–334 (2018).
Gomes, S. I. F. et al. Microbiota in dung and milk differ between organic and conventional dairy farms. Front. Microbiol. 11, 1746 (2020).
Article PubMed PubMed Central Google Scholar
Streule, S., Freimüller Leischtfeld, S., Galler, M. & Miescher Schwenninger, S. Monitoring of cocoa post-harvest process practices on a small-farm level at five locations in Ecuador. Heliyon 8, e09628 (2022).
Article CAS PubMed PubMed Central Google Scholar
Reese, A. T., Madden, A. A., Joossens, M., Lacaze, G. & Dunn, R. R. Influences of ingredients and bakers on the bacteria and fungi in sourdough starters and bread. mSphere 5, e00950–19 (2020). Analysis of potential sources of microorganisms and their influence on composition and function of sourdough communities.
Article CAS PubMed PubMed Central Google Scholar
Einson, J. E. et al. A vegetable fermentation facility hosts distinct microbiomes reflecting the production environment. Appl. Environ. Microbiol. 84, e01680–18 (2018).
Article PubMed PubMed Central Google Scholar
Bokulich, N. A., Ohta, M., Lee, M. & Mills, D. A. Indigenous bacteria and fungi drive traditional Kimoto sake fermentations. Appl. Environ. Microbiol. 80, 5522–5529 (2014).
Article PubMed PubMed Central Google Scholar
Alexa, E. A. et al. The detailed analysis of the microbiome and resistome of artisanal blue-veined cheeses provides evidence on sources and patterns of succession linked with quality and safety traits. Microbiome 12, 78 (2024).
Article CAS PubMed PubMed Central Google Scholar
Hutkins, R. Microbiology and Technology of Fermented Foods 2nd edn (Wiley-Blackwell, 2018).
Wolfe, B. E. & Dutton, R. J. Fermented foods as experimentally tractable microbial ecosystems. Cell 161, 49–55 (2015).
Article CAS PubMed Google Scholar
Gänzle, M. G. et al. Starter culture development and innovation for novel fermented foods. Annu. Rev. Food Sci. Technol. 15, 211–239 (2024).
Johansen, E. Use of natural selection and evolution to develop new starter cultures for fermented foods. Annu. Rev. Food Sci. Technol. 9, 411–428 (2018).
Article CAS PubMed Google Scholar
Wolfe, B. E., Button, J. E., Santarelli, M. & Dutton, R. J. Cheese rind communities provide tractable systems for in situ and in vitro studies of microbial diversity. Cell 158, 422–433 (2014). Early example of the use of in vitro studies to gain mechanistic insights into microbial interactions important for cheese ripening.
Article CAS PubMed PubMed Central Google Scholar
Rousseau, G. M. & Moineau, S. Evolution of Lactococcus lactis phages within a cheese factory. Appl. Environ. Microbiol. 75, 5336–5344 (2009).
Article CAS PubMed PubMed Central Google Scholar
Spus, M. et al. Strain diversity and phage resistance in complex dairy starter cultures. J. Dairy Res. 98, 5173–5182 (2015). Characterization of the role of bacteriophage predation in community stability and function during the production of Gouda cheese.
Karahadian, C. & Lindsay, R. C. Integrated roles of lactate, ammonia, and calcium in texture development of mold surface-ripened cheese. J. Dairy Sci. 70, 909–918 (1987).
Galli, B. D., Martin, J. G. P., da Silva, P. P. M., Porto, E. & Spoto, M. H. F. Sensory quality of Camembert-type cheese: relationship between starter cultures and ripening molds. Int. J. Food Microbiol. 234, 71–75 (2016). Study reporting on the interplay between moulds and lactic acid bacteria and their effects on cheese properties.
Article CAS PubMed Google Scholar
Gillot, G. et al. Functional diversity within the Penicillium roqueforti species. Int. J. Food Microbiol. 241, 141–150 (2017).
Article CAS PubMed Google Scholar
Caron, T. et al. Strong effect of Penicillium roqueforti populations on volatile and metabolic compounds responsible for aromas, flavor and texture in blue cheeses. Int. J. Food Microbiol. 354, 109174 (2021).
Article CAS PubMed Google Scholar
Dalzini, E. et al. Listeria monocytogenes in Gorgonzola cheese: study of the behavior throughout the process and growth predictioni during shelf life. Int. J. Food Microbiol. 262, 71–79 (2017).
Article CAS PubMed Google Scholar
Irlinger, F., Layec, S., Hélinck, S. & Dugat-Bony, E. Cheese rind microbial communities: diversity, composition and origin. FEMS Microbiol. Lett. 362, 1–11 (2015).
Article CAS PubMed Google Scholar
Gori, K., Sørensen, L. M., Petersen, M. A., Jespersen, L. & Arneborg, N. Debaryomyces hansenii strains differ in their production of flavor compounds in a cheese-surface model. MicrobiologyOpen 1, 161–168 (2012).
Article CAS PubMed PubMed Central Google Scholar
Decadt, H., Vermote, L., Díaz-Muñoz, C., Weckx, S. & De Vuyst, L. Decarboxylase activity of the non-starter lactic acid bacterium Loigolactobacillus rennini gives crack defects in Gouda cheese through the production of γ-aminobutyric acid. Appl. Environ. Microbiol. 90, e0165523 (2024).
Jayabalan, R., Malbaša, R. V., Lončar, E. S., Vitas, J. S. & Sathishkumar, M. A review on kombucha tea — microbiology, composition, fermentation, beneficial effects, toxicity, and tea fungus. Compr. Rev. Food Sci. Food Saf. 13, 538–550 (2014).
Comments (0)