Redefining CNS immune privilege

Shirai, Y. On the transplantation of the rat sarcoma in adult heterogenous animals. Jpn. Med. World 1, 14–15 (1921).

Google Scholar 

Murphy, J. B. & Sturm, E. Conditions determining the transplantability of tissues in the brain. J. Exp. Med. 38, 183–197 (1923).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Medawar, P. B. Immunity to homologous grafted skin. III. The fate of skin homographs transplanted to the brain, to subcutaneous tissue, and to the anterior chamber of the eye. Br. J. Exp. Pathol. 29, 58–69 (1948).

CAS  PubMed  PubMed Central  Google Scholar 

Lance, E. M. A functional and morphological study of intracranial parathyroid allografts in the dog. Transplantation 5, 1471 (1967).

Article  Google Scholar 

Block, M. A., Tworek, E. J. & Miller, J. M. Parathyroid homografts in brain tissue: experimental studies. Arch. Surg. 92, 778–784 (1966).

Article  CAS  PubMed  Google Scholar 

Fainstein, N. & Ben-Hur, T. Brain region-dependent rejection of neural precursor cell transplants. Front. Mol. Neurosci. 11, 136 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Coyne, T. M., Marcus, A. J., Woodbury, D. & Black, I. B. Marrow stromal cells transplanted to the adult brain are rejected by an inflammatory response and transfer donor labels to host neurons and glia. Stem Cell 24, 2483–2492 (2006).

Article  Google Scholar 

Lawrence, J. M., Morris, R. J., Wilson, D. J. & Raisman, G. Mechanisms of allograft rejection in the rat brain. Neuroscience 37, 431–462 (1990).

Article  CAS  PubMed  Google Scholar 

Hoffmann, N. et al. A xenotransplant model of human brain tumors in wild-type mice. iScience 23, 100813 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Galea, I., Bechmann, I. & Perry, V. H. What is immune privilege (not)? Trends Immunol. 28, 12–18 (2007).

Article  CAS  PubMed  Google Scholar 

Mascagni, P. Vasorum Lymphaticorum Corporis Humani Historia et Ichnographia (Pazzini Carli, 1787).

Andres, K. H., von Düring, M., Muszynski, K. & Schmidt, R. F. Nerve fibres and their terminals of the dura mater encephali of the rat. Anat. Embryol. 175, 289–301 (1987).

Article  CAS  Google Scholar 

Lukić, I. K., Glunčić, V., Ivkić, G., Hubenstorf, M. & Marušić, A. Virtual dissection: a lesson from the 18th century. Lancet 362, 2110–2113 (2003).

Article  PubMed  Google Scholar 

Ehrlich, P. Das Sauerstoff-Bedürfniss Des Organismus: Eine Farbenanalytische Studie (Verlag von August Hirschwald, 1885).

Key, A. & Retzius, G. Studien in Der Anatomie Des Nervensystems Und Des Bindegewebes https://collections.nlm.nih.gov/catalog/nlm:nlmuid-66211410RX2-mvpart (Samson & Wallin, 1875).

Reese, T. S. & Karnovsky, M. J. Fine structural localization of a blood–brain barrier to exogenous peroxidase. J. Cell Biol. 34, 207–217 (1967).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brightman, M. W. & Reese, T. S. Junctions between intimately apposed cell membranes in the vertebrate brain. J. Cell Biol. 40, 648–677 (1969).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nabeshima, S., Reese, T. S., Landis, D. M. D. & Brightman, M. W. Junctions in the meninges and marginal glia. J. Comp. Neurol. 164, 127–169 (1975).

Article  CAS  PubMed  Google Scholar 

Barker, C. F. & Billingham, R. E. in Advances in Immunology (eds Kunkel, H. G. & Dixon, F. J.) 1–54 (Academic Press, 1978).

Van Hove, H. et al. A single-cell atlas of mouse brain macrophages reveals unique transcriptional identities shaped by ontogeny and tissue environment. Nat. Neurosci. 22, 1021–1035 (2019).

Article  PubMed  Google Scholar 

Oliver, G., Kipnis, J., Randolph, G. J. & Harvey, N. L. The lymphatic vasculature in the 21st century: novel functional roles in homeostasis and disease. Cell 182, 270–296 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Smyth, L. C. D., Beschorner, N., Nedergaard, M. & Kipnis, J. Cellular contributions to glymphatic and lymphatic waste clearance in the brain. Cold Spring Harb. Perspect. Biol. https://doi.org/10.1101/cshperspect.a041370 (2024).

Weed, L. H. Studies on cerebro-spinal fluid. no. II: the theories of drainage of cerebro-spinal fluid with an analysis of the methods of investigation. J. Med. Res. 31, 21–49 (1914).

CAS  PubMed  PubMed Central  Google Scholar 

Proulx, S. T. Cerebrospinal fluid outflow: a review of the historical and contemporary evidence for arachnoid villi, perineural routes, and dural lymphatics. Cell. Mol. Life Sci. 78, 2429–2457 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Engelhardt, B., Vajkoczy, P. & Weller, R. O. The movers and shapers in immune privilege of the CNS. Nat. Immunol. 18, 123–131 (2017).

Article  CAS  PubMed  Google Scholar 

Ma, Q., Ineichen, B. V., Detmar, M. & Proulx, S. T. Outflow of cerebrospinal fluid is predominantly through lymphatic vessels and is reduced in aged mice. Nat. Commun. 8, 1434 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Radoš, M., Živko, M., Periša, A., Orešković, D. & Klarica, M. No arachnoid granulations—no problems: number, size, and distribution of arachnoid granulations from birth to 80 years of age. Front. Aging Neurosci. 13, 698865 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Da Mesquita, S. et al. Functional aspects of meningeal lymphatics in ageing and Alzheimer’s disease. Nature 560, 185–191 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Iliff, J. J. et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci. Transl. Med. 4, 147ra111–147ra111 (2012).

Article  PubMed  PubMed Central  Google Scholar 

Smyth, L. C. D. et al. Identification of direct connections between the dura and the brain. Nature 627, 165–173 (2024).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Spera, I. et al. Open pathways for cerebrospinal fluid outflow at the cribriform plate along the olfactory nerves. eBioMedicine 91, 104558 (2023).

Article  PubMed  PubMed Central  Google Scholar 

Hsu, M. et al. Neuroinflammation creates an immune regulatory niche at the meningeal lymphatic vasculature near the cribriform plate. Nat. Immunol. 23, 581–593 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Weller, R. O., Sharp, M. M., Christodoulides, M., Carare, R. O. & Møllgård, K. The meninges as barriers and facilitators for the movement of fluid, cells and pathogens related to the rodent and human CNS. Acta Neuropathol. 135, 363–385 (2018).

Article  CAS  PubMed  Google Scholar 

Rustenhoven, J. et al. Functional characterization of the dural sinuses as a neuroimmune interface. Cell 184, 1000–1016.e27 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ahn, J. H. et al. Meningeal lymphatic vessels at the skull base drain cerebrospinal fluid. Nature 572, 62–66 (2019).

Article  CAS  PubMed  Google Scholar 

Yoon, J.-H. et al. Nasopharyngeal lymphatic plexus is a hub for cerebrospinal fluid drainage. Nature 625, 768–777 (2024).

Article  CAS  PubMed 

Comments (0)

No login
gif