Shirai, Y. On the transplantation of the rat sarcoma in adult heterogenous animals. Jpn. Med. World 1, 14–15 (1921).
Murphy, J. B. & Sturm, E. Conditions determining the transplantability of tissues in the brain. J. Exp. Med. 38, 183–197 (1923).
Article CAS PubMed PubMed Central Google Scholar
Medawar, P. B. Immunity to homologous grafted skin. III. The fate of skin homographs transplanted to the brain, to subcutaneous tissue, and to the anterior chamber of the eye. Br. J. Exp. Pathol. 29, 58–69 (1948).
CAS PubMed PubMed Central Google Scholar
Lance, E. M. A functional and morphological study of intracranial parathyroid allografts in the dog. Transplantation 5, 1471 (1967).
Block, M. A., Tworek, E. J. & Miller, J. M. Parathyroid homografts in brain tissue: experimental studies. Arch. Surg. 92, 778–784 (1966).
Article CAS PubMed Google Scholar
Fainstein, N. & Ben-Hur, T. Brain region-dependent rejection of neural precursor cell transplants. Front. Mol. Neurosci. 11, 136 (2018).
Article PubMed PubMed Central Google Scholar
Coyne, T. M., Marcus, A. J., Woodbury, D. & Black, I. B. Marrow stromal cells transplanted to the adult brain are rejected by an inflammatory response and transfer donor labels to host neurons and glia. Stem Cell 24, 2483–2492 (2006).
Lawrence, J. M., Morris, R. J., Wilson, D. J. & Raisman, G. Mechanisms of allograft rejection in the rat brain. Neuroscience 37, 431–462 (1990).
Article CAS PubMed Google Scholar
Hoffmann, N. et al. A xenotransplant model of human brain tumors in wild-type mice. iScience 23, 100813 (2019).
Article PubMed PubMed Central Google Scholar
Galea, I., Bechmann, I. & Perry, V. H. What is immune privilege (not)? Trends Immunol. 28, 12–18 (2007).
Article CAS PubMed Google Scholar
Mascagni, P. Vasorum Lymphaticorum Corporis Humani Historia et Ichnographia (Pazzini Carli, 1787).
Andres, K. H., von Düring, M., Muszynski, K. & Schmidt, R. F. Nerve fibres and their terminals of the dura mater encephali of the rat. Anat. Embryol. 175, 289–301 (1987).
Lukić, I. K., Glunčić, V., Ivkić, G., Hubenstorf, M. & Marušić, A. Virtual dissection: a lesson from the 18th century. Lancet 362, 2110–2113 (2003).
Ehrlich, P. Das Sauerstoff-Bedürfniss Des Organismus: Eine Farbenanalytische Studie (Verlag von August Hirschwald, 1885).
Key, A. & Retzius, G. Studien in Der Anatomie Des Nervensystems Und Des Bindegewebes https://collections.nlm.nih.gov/catalog/nlm:nlmuid-66211410RX2-mvpart (Samson & Wallin, 1875).
Reese, T. S. & Karnovsky, M. J. Fine structural localization of a blood–brain barrier to exogenous peroxidase. J. Cell Biol. 34, 207–217 (1967).
Article CAS PubMed PubMed Central Google Scholar
Brightman, M. W. & Reese, T. S. Junctions between intimately apposed cell membranes in the vertebrate brain. J. Cell Biol. 40, 648–677 (1969).
Article CAS PubMed PubMed Central Google Scholar
Nabeshima, S., Reese, T. S., Landis, D. M. D. & Brightman, M. W. Junctions in the meninges and marginal glia. J. Comp. Neurol. 164, 127–169 (1975).
Article CAS PubMed Google Scholar
Barker, C. F. & Billingham, R. E. in Advances in Immunology (eds Kunkel, H. G. & Dixon, F. J.) 1–54 (Academic Press, 1978).
Van Hove, H. et al. A single-cell atlas of mouse brain macrophages reveals unique transcriptional identities shaped by ontogeny and tissue environment. Nat. Neurosci. 22, 1021–1035 (2019).
Oliver, G., Kipnis, J., Randolph, G. J. & Harvey, N. L. The lymphatic vasculature in the 21st century: novel functional roles in homeostasis and disease. Cell 182, 270–296 (2020).
Article CAS PubMed PubMed Central Google Scholar
Smyth, L. C. D., Beschorner, N., Nedergaard, M. & Kipnis, J. Cellular contributions to glymphatic and lymphatic waste clearance in the brain. Cold Spring Harb. Perspect. Biol. https://doi.org/10.1101/cshperspect.a041370 (2024).
Weed, L. H. Studies on cerebro-spinal fluid. no. II: the theories of drainage of cerebro-spinal fluid with an analysis of the methods of investigation. J. Med. Res. 31, 21–49 (1914).
CAS PubMed PubMed Central Google Scholar
Proulx, S. T. Cerebrospinal fluid outflow: a review of the historical and contemporary evidence for arachnoid villi, perineural routes, and dural lymphatics. Cell. Mol. Life Sci. 78, 2429–2457 (2021).
Article CAS PubMed PubMed Central Google Scholar
Engelhardt, B., Vajkoczy, P. & Weller, R. O. The movers and shapers in immune privilege of the CNS. Nat. Immunol. 18, 123–131 (2017).
Article CAS PubMed Google Scholar
Ma, Q., Ineichen, B. V., Detmar, M. & Proulx, S. T. Outflow of cerebrospinal fluid is predominantly through lymphatic vessels and is reduced in aged mice. Nat. Commun. 8, 1434 (2017).
Article PubMed PubMed Central Google Scholar
Radoš, M., Živko, M., Periša, A., Orešković, D. & Klarica, M. No arachnoid granulations—no problems: number, size, and distribution of arachnoid granulations from birth to 80 years of age. Front. Aging Neurosci. 13, 698865 (2021).
Article PubMed PubMed Central Google Scholar
Da Mesquita, S. et al. Functional aspects of meningeal lymphatics in ageing and Alzheimer’s disease. Nature 560, 185–191 (2018).
Article PubMed PubMed Central Google Scholar
Iliff, J. J. et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci. Transl. Med. 4, 147ra111–147ra111 (2012).
Article PubMed PubMed Central Google Scholar
Smyth, L. C. D. et al. Identification of direct connections between the dura and the brain. Nature 627, 165–173 (2024).
Article CAS PubMed PubMed Central Google Scholar
Spera, I. et al. Open pathways for cerebrospinal fluid outflow at the cribriform plate along the olfactory nerves. eBioMedicine 91, 104558 (2023).
Article PubMed PubMed Central Google Scholar
Hsu, M. et al. Neuroinflammation creates an immune regulatory niche at the meningeal lymphatic vasculature near the cribriform plate. Nat. Immunol. 23, 581–593 (2022).
Article CAS PubMed PubMed Central Google Scholar
Weller, R. O., Sharp, M. M., Christodoulides, M., Carare, R. O. & Møllgård, K. The meninges as barriers and facilitators for the movement of fluid, cells and pathogens related to the rodent and human CNS. Acta Neuropathol. 135, 363–385 (2018).
Article CAS PubMed Google Scholar
Rustenhoven, J. et al. Functional characterization of the dural sinuses as a neuroimmune interface. Cell 184, 1000–1016.e27 (2021).
Article CAS PubMed PubMed Central Google Scholar
Ahn, J. H. et al. Meningeal lymphatic vessels at the skull base drain cerebrospinal fluid. Nature 572, 62–66 (2019).
Article CAS PubMed Google Scholar
Yoon, J.-H. et al. Nasopharyngeal lymphatic plexus is a hub for cerebrospinal fluid drainage. Nature 625, 768–777 (2024).
Comments (0)