The role of the enteric nervous system in the pathogenesis of Clostridioides difficile infection

Girao, E. S. et al. Prevalence of Clostridioides difficile associated diarrhea in hospitalized patients in five Brazilian centers: a multicenter, prospective study. Anaerobe 66, 102267 (2020).

Article  CAS  PubMed  Google Scholar 

Marra, A. R. et al. Incidence and outcomes associated with Clostridium difficile infections: a systematic review and meta-analysis. JAMA Netw. Open 3, e1917597 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Jazmati, N. et al. Occurrence and trends of Clostridioides difficile infections in hospitalized patients: a prospective multi-centre cohort study in six German university hospitals, 2016–2020. J. Hosp. Infect. 151, 161–172 (2024).

Article  CAS  PubMed  Google Scholar 

Viprey, V. F. et al. European survey on the current surveillance practices, management guidelines, treatment pathways and heterogeneity of testing of Clostridioides difficile, 2018–2019: results from the Combatting Bacterial Resistance in Europe CDI (COMBACTE-CDI). J. Hosp. Infect. 131, 213–220 (2023).

Article  CAS  PubMed  Google Scholar 

Kim, J. et al. Incidence of Clostridioides difficile infections in Republic of Korea: a prospective study with active surveillance vs. national data from health insurance review & assessment service. J. Korean Med. Sci. 39, e118 (2024).

Article  PubMed  PubMed Central  Google Scholar 

Braga, D. S. et al. Incidence of healthcare-associated Clostridioides difficile infection in a quaternary referral university hospital in Brazil. Anaerobe 79, 102672 (2023).

Article  PubMed  Google Scholar 

Barlam, T. F. et al. Retrospective analysis of long-term gastrointestinal symptoms after Clostridium difficile infection in a nonelderly cohort. PLoS ONE 13, e0209152 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Gutierrez, R. L., Riddle, M. S. & Porter, C. K. Increased risk of functional gastrointestinal sequelae after Clostridium difficile infection among active duty United States military personnel (1998–2010). Gastroenterology 149, 1408–1414 (2015).

Article  PubMed  Google Scholar 

Costa, D. V. S. et al. Clostridioides difficile infection promotes gastrointestinal dysfunction in human and mice post-acute phase of the disease. Anaerobe 87, 102837 (2024).

Article  CAS  PubMed  Google Scholar 

Wadhwa, A. et al. High risk of post-infectious irritable bowel syndrome in patients with Clostridium difficile infection. Aliment. Pharmacol. Ther. 44, 576–582 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Peery, A. F. et al. Burden and cost of gastrointestinal, liver, and pancreatic diseases in the United States: update 2021. Gastroenterology 162, 621–644 (2022).

Article  PubMed  Google Scholar 

Ge, X. et al. Antibiotics-induced depletion of mice microbiota induces changes in host serotonin biosynthesis and intestinal motility. J. Transl. Med. 15, 13 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Johnson, S. et al. Clinical practice guideline by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA): 2021 focused update guidelines on management of Clostridioides difficile infection in adults. Clin. Infect. Dis. 73, 755–757 (2021).

Article  PubMed  Google Scholar 

von Boyen, G. B. et al. Distribution of enteric glia and GDNF during gut inflammation. BMC Gastroenterol. 11, 3 (2011).

Article  Google Scholar 

Costa, D. V. S. et al. S100B inhibition attenuates intestinal damage and diarrhea severity during Clostridioides difficile infection by modulating inflammatory response. Front. Cell. Infect. Microbiol. 11, 739874 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Manion, J. et al. C. difficile intoxicates neurons and pericytes to drive neurogenic inflammation. Nature 622, 611–618 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Santos, A. et al. P2X7 receptor blockade decreases inflammation, apoptosis, and enteric neuron loss during Clostridioides difficile toxin A-induced ileitis in mice. World J. Gastroenterol. 28, 4075–4088 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Costa, D. V. S. et al. Adenosine receptors differentially mediate enteric glial cell death induced by Clostridioides difficile toxins A and B. Front. Immunol. 13, 956326 (2022).

Article  CAS  PubMed  Google Scholar 

Zhang, K. et al. TcdB from hypervirulent Clostridioides difficile induces neuronal loss and neurotransmitter alterations in the intrinsic enteric nervous system. J. Infect. Dis. https://doi.org/10.1093/infdis/jiae498 (2024).

Article  PubMed  PubMed Central  Google Scholar 

Xia, Y., Hu, H. Z., Liu, S., Pothoulakis, C. & Wood, J. D. Clostridium difficile toxin A excites enteric neurones and suppresses sympathetic neurotransmission in the guinea pig. Gut 46, 481–486 (2000).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mantyh, C. R., McVey, D. C. & Vigna, S. R. Extrinsic surgical denervation inhibits Clostridium difficile toxin A-induced enteritis in rats. Neurosci. Lett. 292, 95–98 (2000).

Article  CAS  PubMed  Google Scholar 

Pothoulakis, C. et al. CP-96,345, a substance P antagonist, inhibits rat intestinal responses to Clostridium difficile toxin A but not cholera toxin. Proc. Natl Acad. Sci. USA 91, 947–951 (1994).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Keates, A. C. et al. CGRP upregulation in dorsal root ganglia and ileal mucosa during Clostridium difficile toxin A-induced enteritis. Am. J. Physiol. 274, G196–G202 (1998).

CAS  PubMed  Google Scholar 

Wen, B. J. et al. Prevalence and molecular characterization of Clostridioides difficile infection in China over the past 5 years: a systematic review and meta-analysis. Int. J. Infect. Dis. 130, 86–93 (2023).

Article  CAS  PubMed  Google Scholar 

Cui, Y. et al. An epidemiological surveillance study (2021–2022): detection of a high diversity of Clostridioides difficile isolates in one tertiary hospital in Chongqing, Southwest China. BMC Infect. Dis. 23, 703 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

McDonald, L. C. et al. Clinical practice guidelines for Clostridium difficile infection in adults and children: 2017 update by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA). Clin. Infect. Dis. 66, 987–994 (2018).

Article  CAS  PubMed  Google Scholar 

Costa, D. V. S. et al. Influence of binary toxin gene detection and decreased susceptibility to antibiotics among Clostridioides difficile strains on disease severity: a single-center study. Antimicrob. Agents Chemother. 66, e0048922 (2022).

Article  PubMed  Google Scholar 

Wingen-Heimann, S. M. et al. Clostridioides difficile infection (CDI): a pan-European multi-center cost and resource utilization study, results from the combatting bacterial resistance in Europe CDI (COMBACTE-CDI). Clin. Microbiol. Infect. 29, e651–658 (2023).

Article  Google Scholar 

Feuerstadt, P., Nelson, W. W., Teigland, C. & Dahdal, D. N. Clinical burden of recurrent Clostridioides difficile infection in the medicare population: a real-world claims analysis. Antimicrob. Steward. Healthc. Epidemiol. 2, e60 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Miles-Jay, A. et al. Longitudinal genomic surveillance of carriage and transmission of Clostridioides difficile in an intensive care unit. Nat. Med. 29, 2526–2534 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Eubank, T. A., Dureja, C., Garey, K. W., Hurdle, J. G. & Gonzales-Luna, A. J. Reduced vancomycin susceptibility in Clostridioides difficile is associated with lower rates of initial cure and sustained clinical response. Clin. Infect. Dis. 79, 15–21 (2024).

Article 

Comments (0)

No login
gif