Chen, S., Xiong, F. & Huang, W. Surface chemistry and catalysis of oxide model catalysts from single crystals to nanocrystals. Surf. Sci. Rep. 74, 100471 (2019).
Goodman, D. W. Catalysis: from single crystals to the ‘real world’. Surf. Sci. 299-300, 837–848 (1994).
Oosterbeek, H. Bridging the pressure and material gap in heterogeneous catalysis: cobalt Fischer–Tropsch catalysts from surface science to industrial application. Phys. Chem. Chem. Phys. 9, 3570–3576 (2007).
Article CAS PubMed Google Scholar
Esposito, D. Mind the gap. Nat. Catal. 1, 807–808 (2018).
Huang, W. X. Oxide nanocrystal model catalysts. Acc. Chem. Res. 49, 520–527 (2016).
Article CAS PubMed Google Scholar
Somorjai, G. A. & Park, J. Y. Molecular surface chemistry by metal single crystals and nanoparticles from vacuum to high pressure. Chem. Soc. Rev. 37, 2155–2162 (2008).
Article CAS PubMed Google Scholar
Liu, L. C. & Corma, A. Structural transformations of solid electrocatalysts and photocatalysts. Nat. Rev. Chem. 5, 256–276 (2021).
Article CAS PubMed Google Scholar
Zaera, F. Shape-controlled nanostructures in heterogeneous catalysis. ChemSusChem 6, 1797–1820 (2013).
Article CAS PubMed Google Scholar
Liang, S. X., Zhang, L. C., Reichenberger, S. & Barcikowski, S. Design and perspective of amorphous metal nanoparticles from laser synthesis and processing. Phys. Chem. Chem. Phys. 23, 11121–11154 (2021).
Article CAS PubMed Google Scholar
Song, Y. et al. Dry reforming of methane by stable Ni-Mo nanocatalysts on single-crystalline MgO. Science 367, 777–781 (2020). This paper introduces the new nanocatalysts on single crystal edges (NOSCE) technique in heterogeneous catalysis.
Article CAS PubMed Google Scholar
Briega-Martos, V. & Yang, Y. Single-crystal metals and oxides as atomically precise energy materials platforms for fundamental electrocatalysis. Acc. Mater. Res. 5, 518–522 (2024).
Fu, C. et al. Spontaneous bulk-surface charge separation of TiO2- nanocrystals leads to high activity in photocatalytic methane combustion. ACS Catal. 12, 6457–6463 (2022).
Berry, T., Ng, N. & McQueen, T. M. Tools and tricks for single crystal growth. Chem. Mater. 36, 4929–4944 (2024).
Jin, S. & Ruoff, R. S. Preparation and uses of large area single crystal metal foils. Apl. Mater. 7, 100905 (2019).
Birks, L. S., Hurley, J. W. & Sweeney, W. E. Perfection of ruby laser crystals. J. Appl. Phys. 36, 3562–3565 (1965).
Müller, G. The czochralski method — where we are 90 years after Jan Czochralski’s invention. Cryst. Res. Technol. 42, 1150–1161 (2007).
Kato, H., Kobayashi, M., Hara, M. & Kakihana, M. Fabrication of SrTiO3 exposing characteristic facets using molten salt flux and mprovement of photocatalytic activity for water splitting. Catal. Sci. Technol. 3, 1733–1738 (2013).
Lyu, S. C., Zhang, Y., Lee, C. J., Ruh, H. & Lee, H. J. Low-temperature growth of ZnO nanowire array by a simple physical vapor-deposition method. Chem. Mater. 15, 3294–3299 (2003).
Li, W.-N., Yuan, J., Gomez-Mower, S., Sithambaram, S. & Suib, S. L. Synthesis of single crystal manganese oxide octahedral molecular sieve (OMS) nanostructures with tunable tunnels and shapes. J. Phys. Chem. B 110, 3066–3070 (2006).
Article CAS PubMed Google Scholar
Zhang, L. H., Wu, J. J., Liao, H. B., Hou, Y. L. & Gao, S. Octahedral Fe3O4 nanoparticles and their assembled structures. Chem. Commun. 4378–4380 (2009).
Wang, X. et al. Synthesis of single-crystalline Co3O4 octahedral cages with tunable surface aperture and their lithium storage properties. J. Phys. Chem. C. 113, 15553–15558 (2009).
Corbett, J. D. in Survey of Progress in Chemistry Vol. 2 (ed. Scott, A. F.) 91–154 (Elsevier, 1964).
Fisher, I. R., Shapiro, M. C. & Analytis, J. G. Principles of crystal growth of intermetallic and oxide compounds from molten solutions. Phil. Mag. 92, 2401–2435 (2012).
Voronkova, V. I., Yanovskii, V. K., Vodolazskaya, I. V. & Shubentsova, E. S. in Growth of Crystals (eds Givargizov, E. I. & Grinberg, S. A.) 111–127 (Springer, 1993).
Boltersdorf, J., King, N. & Maggard, P. A. Flux-mediated crystal growth of metal oxides: synthetic tunability of particle morphologies, sizes, and surface features for photocatalysis research. CrystEngComm 17, 2225–2241 (2015).
Gupta, S. K. & Mao, Y. A review on molten salt synthesis of metal oxide nanomaterials: status, opportunity, and challenge. Prog. Mater. Sci. 117, 100734 (2021).
Jiang, Z.-Y. et al. Molten salt route toward the growth of ZnO nanowires in unusual growth directions. J. Phys. Chem. B 109, 23269–23273 (2005).
Article CAS PubMed Google Scholar
Ke, X. et al. Molten salt synthesis of single-crystal Co3O4 nanorods. Mater. Lett. 61, 3901–3903 (2007).
Rockett, A. in The Materials Science of Semiconductors (ed. Rockett, A.) 505–572 (Springer, 2008).
Pan, Z. W., Dai, Z. R. & Wang, Z. L. Nanobelts of semiconducting oxides. Science 291, 1947–1949 (2001).
Article CAS PubMed Google Scholar
Sandana, V. E. et al. Comparison of ZnO nanostructures grown using pulsed laser deposition, metal organic chemical vapor deposition, and physical vapor transport. J. Vac. Sci. Technol. B 27, 1678–1683 (2009).
Muth, J. F., Kolbas, R. M., Sharma, A. K., Oktyabrsky, S. & Narayan, J. Excitonic structure and absorption coefficient measurements of ZnO single crystal epitaxial films deposited by pulsed laser deposition. J. Appl. Phys. 85, 7884–7887 (1999).
Wu, J.-J. & Liu, S.-C. Low-temperature growth of well-aligned ZnO nanorods by chemical vapor deposition. Adv. Mater. 14, 215–218 (2002).
Mathur, S., Barth, S., Werner, U., Hernandez-Ramirez, F. & Romano-Rodriguez, A. Chemical vapor growth of one-dimensional magnetite nanostructures. Adv. Mater. 20, 1550–1554 (2008).
Haddad, K. et al. Growth of single crystal, oriented SnO2 nanocolumn arrays by aerosol chemical vapour deposition. CrystEngComm 18, 7544–7553 (2016).
Whittingham, M. S. Hydrothermal synthesis of transition metal oxides under mild conditions. Curr. Opin. Solid. State Mater. Sci. 1, 227–232 (1996).
Rabenau, A. The role of hydrothermal synthesis in preparative chemistry. Angew. Chem. Int. Ed. Engl. 24, 1026–1040 (1985).
Beck, J. S. et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates. J. Am. Chem. Soc. 114, 10834–10843 (1992).
Cundy, C. S. & Cox, P. A. The hydrothermal synthesis of zeolites: history and development from the earliest days to the present time. Chem. Rev. 103, 663–702 (2003).
Article CAS PubMed Google Scholar
Kardash, T. Y. et al. The evolution of the M1 local structure during preparation of VMoNbTeO catalysts for ethane oxidative dehydrogenation to ethylene. RSC Adv. 8, 35903–35916 (2018).
Comments (0)