Structural control over single-crystalline oxides for heterogeneous catalysis

Chen, S., Xiong, F. & Huang, W. Surface chemistry and catalysis of oxide model catalysts from single crystals to nanocrystals. Surf. Sci. Rep. 74, 100471 (2019).

Article  CAS  Google Scholar 

Goodman, D. W. Catalysis: from single crystals to the ‘real world’. Surf. Sci. 299-300, 837–848 (1994).

Article  CAS  Google Scholar 

Oosterbeek, H. Bridging the pressure and material gap in heterogeneous catalysis: cobalt Fischer–Tropsch catalysts from surface science to industrial application. Phys. Chem. Chem. Phys. 9, 3570–3576 (2007).

Article  CAS  PubMed  Google Scholar 

Esposito, D. Mind the gap. Nat. Catal. 1, 807–808 (2018).

Article  Google Scholar 

Huang, W. X. Oxide nanocrystal model catalysts. Acc. Chem. Res. 49, 520–527 (2016).

Article  CAS  PubMed  Google Scholar 

Somorjai, G. A. & Park, J. Y. Molecular surface chemistry by metal single crystals and nanoparticles from vacuum to high pressure. Chem. Soc. Rev. 37, 2155–2162 (2008).

Article  CAS  PubMed  Google Scholar 

Liu, L. C. & Corma, A. Structural transformations of solid electrocatalysts and photocatalysts. Nat. Rev. Chem. 5, 256–276 (2021).

Article  CAS  PubMed  Google Scholar 

Zaera, F. Shape-controlled nanostructures in heterogeneous catalysis. ChemSusChem 6, 1797–1820 (2013).

Article  CAS  PubMed  Google Scholar 

Liang, S. X., Zhang, L. C., Reichenberger, S. & Barcikowski, S. Design and perspective of amorphous metal nanoparticles from laser synthesis and processing. Phys. Chem. Chem. Phys. 23, 11121–11154 (2021).

Article  CAS  PubMed  Google Scholar 

Song, Y. et al. Dry reforming of methane by stable Ni-Mo nanocatalysts on single-crystalline MgO. Science 367, 777–781 (2020). This paper introduces the new nanocatalysts on single crystal edges (NOSCE) technique in heterogeneous catalysis.

Article  CAS  PubMed  Google Scholar 

Briega-Martos, V. & Yang, Y. Single-crystal metals and oxides as atomically precise energy materials platforms for fundamental electrocatalysis. Acc. Mater. Res. 5, 518–522 (2024).

Article  CAS  Google Scholar 

Fu, C. et al. Spontaneous bulk-surface charge separation of TiO2- nanocrystals leads to high activity in photocatalytic methane combustion. ACS Catal. 12, 6457–6463 (2022).

Article  CAS  Google Scholar 

Berry, T., Ng, N. & McQueen, T. M. Tools and tricks for single crystal growth. Chem. Mater. 36, 4929–4944 (2024).

Article  CAS  Google Scholar 

Jin, S. & Ruoff, R. S. Preparation and uses of large area single crystal metal foils. Apl. Mater. 7, 100905 (2019).

Article  Google Scholar 

Birks, L. S., Hurley, J. W. & Sweeney, W. E. Perfection of ruby laser crystals. J. Appl. Phys. 36, 3562–3565 (1965).

Article  CAS  Google Scholar 

Müller, G. The czochralski method — where we are 90 years after Jan Czochralski’s invention. Cryst. Res. Technol. 42, 1150–1161 (2007).

Article  Google Scholar 

Kato, H., Kobayashi, M., Hara, M. & Kakihana, M. Fabrication of SrTiO3 exposing characteristic facets using molten salt flux and mprovement of photocatalytic activity for water splitting. Catal. Sci. Technol. 3, 1733–1738 (2013).

Article  CAS  Google Scholar 

Lyu, S. C., Zhang, Y., Lee, C. J., Ruh, H. & Lee, H. J. Low-temperature growth of ZnO nanowire array by a simple physical vapor-deposition method. Chem. Mater. 15, 3294–3299 (2003).

Article  CAS  Google Scholar 

Li, W.-N., Yuan, J., Gomez-Mower, S., Sithambaram, S. & Suib, S. L. Synthesis of single crystal manganese oxide octahedral molecular sieve (OMS) nanostructures with tunable tunnels and shapes. J. Phys. Chem. B 110, 3066–3070 (2006).

Article  CAS  PubMed  Google Scholar 

Zhang, L. H., Wu, J. J., Liao, H. B., Hou, Y. L. & Gao, S. Octahedral Fe3O4 nanoparticles and their assembled structures. Chem. Commun. 4378–4380 (2009).

Wang, X. et al. Synthesis of single-crystalline Co3O4 octahedral cages with tunable surface aperture and their lithium storage properties. J. Phys. Chem. C. 113, 15553–15558 (2009).

Article  CAS  Google Scholar 

Corbett, J. D. in Survey of Progress in Chemistry Vol. 2 (ed. Scott, A. F.) 91–154 (Elsevier, 1964).

Fisher, I. R., Shapiro, M. C. & Analytis, J. G. Principles of crystal growth of intermetallic and oxide compounds from molten solutions. Phil. Mag. 92, 2401–2435 (2012).

Article  CAS  Google Scholar 

Voronkova, V. I., Yanovskii, V. K., Vodolazskaya, I. V. & Shubentsova, E. S. in Growth of Crystals (eds Givargizov, E. I. & Grinberg, S. A.) 111–127 (Springer, 1993).

Boltersdorf, J., King, N. & Maggard, P. A. Flux-mediated crystal growth of metal oxides: synthetic tunability of particle morphologies, sizes, and surface features for photocatalysis research. CrystEngComm 17, 2225–2241 (2015).

Article  CAS  Google Scholar 

Gupta, S. K. & Mao, Y. A review on molten salt synthesis of metal oxide nanomaterials: status, opportunity, and challenge. Prog. Mater. Sci. 117, 100734 (2021).

Article  CAS  Google Scholar 

Jiang, Z.-Y. et al. Molten salt route toward the growth of ZnO nanowires in unusual growth directions. J. Phys. Chem. B 109, 23269–23273 (2005).

Article  CAS  PubMed  Google Scholar 

Ke, X. et al. Molten salt synthesis of single-crystal Co3O4 nanorods. Mater. Lett. 61, 3901–3903 (2007).

Article  CAS  Google Scholar 

Rockett, A. in The Materials Science of Semiconductors (ed. Rockett, A.) 505–572 (Springer, 2008).

Pan, Z. W., Dai, Z. R. & Wang, Z. L. Nanobelts of semiconducting oxides. Science 291, 1947–1949 (2001).

Article  CAS  PubMed  Google Scholar 

Sandana, V. E. et al. Comparison of ZnO nanostructures grown using pulsed laser deposition, metal organic chemical vapor deposition, and physical vapor transport. J. Vac. Sci. Technol. B 27, 1678–1683 (2009).

Article  CAS  Google Scholar 

Muth, J. F., Kolbas, R. M., Sharma, A. K., Oktyabrsky, S. & Narayan, J. Excitonic structure and absorption coefficient measurements of ZnO single crystal epitaxial films deposited by pulsed laser deposition. J. Appl. Phys. 85, 7884–7887 (1999).

Article  CAS  Google Scholar 

Wu, J.-J. & Liu, S.-C. Low-temperature growth of well-aligned ZnO nanorods by chemical vapor deposition. Adv. Mater. 14, 215–218 (2002).

Article  CAS  Google Scholar 

Mathur, S., Barth, S., Werner, U., Hernandez-Ramirez, F. & Romano-Rodriguez, A. Chemical vapor growth of one-dimensional magnetite nanostructures. Adv. Mater. 20, 1550–1554 (2008).

Article  CAS  Google Scholar 

Haddad, K. et al. Growth of single crystal, oriented SnO2 nanocolumn arrays by aerosol chemical vapour deposition. CrystEngComm 18, 7544–7553 (2016).

Article  CAS  Google Scholar 

Whittingham, M. S. Hydrothermal synthesis of transition metal oxides under mild conditions. Curr. Opin. Solid. State Mater. Sci. 1, 227–232 (1996).

Article  CAS  Google Scholar 

Rabenau, A. The role of hydrothermal synthesis in preparative chemistry. Angew. Chem. Int. Ed. Engl. 24, 1026–1040 (1985).

Article  Google Scholar 

Beck, J. S. et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates. J. Am. Chem. Soc. 114, 10834–10843 (1992).

Article  CAS  Google Scholar 

Cundy, C. S. & Cox, P. A. The hydrothermal synthesis of zeolites: history and development from the earliest days to the present time. Chem. Rev. 103, 663–702 (2003).

Article  CAS  PubMed  Google Scholar 

Kardash, T. Y. et al. The evolution of the M1 local structure during preparation of VMoNbTeO catalysts for ethane oxidative dehydrogenation to ethylene. RSC Adv. 8, 35903–35916 (2018).

Article  CAS  PubMed 

Comments (0)

No login
gif