Zewail, A. H. Femtochemistry: atomic-scale dynamics of the chemical bond. J. Phys. Chem. A 104, 5660–5694 (2000).
Alarcos, N., Cohen, B., Ziółek, M. & Douhal, A. Photochemistry and photophysics in silica-based materials: ultrafast and single molecule spectroscopy observation. Chem. Rev. 117, 13639–13720 (2017).
Article CAS PubMed Google Scholar
Maiuri, M., Garavelli, M. & Cerullo, G. Ultrafast spectroscopy: state of the art and open challenges. J. Am. Chem. Soc. 142, 3–15 (2019).
Biswas, S., Kim, J., Zhang, X. & Scholes, G. D. Coherent two-dimensional and broadband electronic spectroscopies. Chem. Rev. 122, 4257–4321 (2022).
Article CAS PubMed Google Scholar
Ball, P. Water as an active constituent in cell biology. Chem. Rev. 108, 74–108 (2008).
Article CAS PubMed Google Scholar
Breiten, B. et al. Water networks contribute to enthalpy/entropy compensation in protein–ligand binding. J. Am. Chem. Soc. 135, 15579–15584 (2013).
Article CAS PubMed Google Scholar
Conti Nibali, V. & Havenith, M. New insights into the role of water in biological function: studying solvated biomolecules using terahertz absorption spectroscopy in conjunction with molecular dynamics simulations. J. Am. Chem. Soc. 136, 12800–12807 (2014).
Article CAS PubMed Google Scholar
Ball, P. Water is an active matrix of life for cell and molecular biology. Proc. Natl Acad. Sci. USA 114, 13327–13335 (2017).
Article CAS PubMed PubMed Central Google Scholar
Todd, M. J. & Gomez, J. Enzyme kinetics determined using calorimetry: a general assay for enzyme activity? Anal. Biochem. 296, 179–187 (2001).
Article CAS PubMed Google Scholar
Ladbury, J. E. & Doyle, M. L. Biocalorimetry 2: Applications of Calorimetry in the Biological Sciences (Wiley, 2004).
Gill, P., Moghadam, T. T. & Ranjbar, B. Differential scanning calorimetry techniques: applications in biology and nanoscience. J. Biomol. Tech. 21, 167 (2010).
PubMed PubMed Central Google Scholar
Clout, A. et al. Simultaneous differential scanning calorimetry-synchrotron X-ray powder diffraction: a powerful technique for physical form characterization in pharmaceutical materials. Anal. Chem. 88, 10111–10117 (2016).
Article CAS PubMed Google Scholar
Askin, S. et al. A simultaneous differential scanning calorimetry–X-ray diffraction study of olanzapine crystallization from amorphous solid dispersions. Mol. Pharm. 17, 4364–4374 (2020).
Article CAS PubMed Google Scholar
Fornalski, D. et al. Simultaneous thermodynamic and dynamical characterisation using in situ calorimetry with neutron spectroscopy. Low Temp. Phys. 45, 289–293 (2019).
Pandita, S. D. et al. Simultaneous DSC-FTIR spectroscopy: comparison of cross-linking kinetics of an epoxy/amine resin system. Thermochim. Acta 543, 9–17 (2012).
Riedel, C. et al. The heat released during catalytic turnover enhances the diffusion of an enzyme. Nature 517, 227–230 (2015).
Article CAS PubMed Google Scholar
Rego, N. B. & Patel, A. J. Understanding hydrophobic effects: insights from water density fluctuations. Annu. Rev. Condens. Matter Phys. 13, 303–324 (2022).
Monroe, J. et al. Water structure and properties at hydrophilic and hydrophobic surfaces. Annu. Rev. Chem. Biomol. 11, 523–557 (2020).
Jamadagni, S. N., Godawat, R. & Garde, S. Hydrophobicity of proteins and interfaces: insights from density fluctuations. Annu. Rev. Chem. Biomol. Eng. 2, 147–171 (2011).
Article CAS PubMed Google Scholar
Giovambattista, N., Lopez, C. F., Rossky, P. J. & Debenedetti, P. G. Hydrophobicity of protein surfaces: separating geometry from chemistry. Proc. Natl Acad. Sci. USA 105, 2274–2279 (2008).
Article CAS PubMed PubMed Central Google Scholar
Cheng, Y.-K. & Rossky, P. J. Surface topography dependence of biomolecular hydrophobic hydration. Nature 392, 696–699 (1998).
Article CAS PubMed Google Scholar
Perakis, F. et al. Vibrational spectroscopy and dynamics of water. Chem. Rev. 116, 7590–7607 (2016).
Article CAS PubMed Google Scholar
Bakker, H. J. & Skinner, J. L. Vibrational spectroscopy as a probe of structure and dynamics in liquid water. Chem. Rev. 110, 1498–1517 (2010).
Article CAS PubMed Google Scholar
Davis, J. G., Gierszal, K. P., Wang, P. & Ben-Amotz, D. Water structural transformation at molecular hydrophobic interfaces. Nature 491, 582–585 (2012).
Article CAS PubMed Google Scholar
Ben-Amotz, D. Hydration-shell vibrational spectroscopy. J. Am. Chem. Soc. 141, 10569–10580 (2019).
Article CAS PubMed Google Scholar
Bredt, A. J. & Ben-Amotz, D. Influence of crowding on hydrophobic hydration-shell structure. Phys. Chem. Chem. Phys. 22, 11724–11730 (2020).
Article CAS PubMed Google Scholar
Penkov, N. V. Terahertz spectroscopy as a method for investigation of hydration shells of biomolecules. Biophys. Rev. 15, 1–17 (2023).
Pal, S. K., Peon, J. & Zewail, A. H. Biological water at the protein surface: dynamical solvation probed directly with femtosecond resolution. Proc. Natl Acad. Sci. USA 99, 1763–1768 (2002).
Article CAS PubMed PubMed Central Google Scholar
Ebbinghaus, S. et al. An extended dynamical hydration shell around proteins. Proc. Natl Acad. Sci. USA 104, 20749–20752 (2007).
Article CAS PubMed PubMed Central Google Scholar
Qin, Y., Wang, L. & Zhong, D. Dynamics and mechanism of ultrafast water–protein interactions. Proc. Natl Acad. Sci. USA 113, 8424–8429 (2016).
Article CAS PubMed PubMed Central Google Scholar
Savolainen, J., Uhlig, F., Ahmed, S., Hamm, P. & Jungwirth, P. Direct observation of the collapse of the delocalized excess electron in water. Nat. Chem. 6, 697–701 (2014).
Article CAS PubMed Google Scholar
Shalit, A., Ahmed, S., Savolainen, J. & Hamm, P. Terahertz echoes reveal the inhomogeneity of aqueous salt solutions. Nat. Chem. 9, 273–278 (2017).
Article CAS PubMed Google Scholar
Hoberg, C. et al. Caught in the act: real-time observation of the solvent response that promotes excited-state proton transfer in pyranine. Chem. Sci. 14, 4048–4058 (2023).
Article CAS PubMed PubMed Central Google Scholar
Hamm, P. & Zanni, M. Concepts and Methods of 2D Infrared Spectroscopy (Cambridge Univ. Press, 2011).
Dhillon, S. et al. The 2017 terahertz science and technology roadmap. J. Phys. D Appl. Phys. 50, 043001 (2017).
Comments (0)