Neonatal and Syndromic Forms of Diabetes

Koboldt DC, Steinberg KM, Larson DE, Wilson RK, Mardis ER. The next-generation sequencing revolution and its impact on genomics. Cell. 2013;155(1):27–38. https://doi.org/10.1016/j.cell.2013.09.006.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Murphy R, Colclough K, Pollin TI, Ikle JM, Svalastoga P, Maloney KA, et al. The use of precision diagnostics for monogenic diabetes: a systematic review and expert opinion. Commun Med (Lond). 2023;3(1):136. https://doi.org/10.1038/s43856-023-00369-8.

Article  PubMed  Google Scholar 

Yahaya TO, Anyebe DA. Genes predisposing to neonatal diabetes mellitus and pathophysiology: Current findings. J Neonatal Perinatal Med. 2020;13(4):543–53. https://doi.org/10.3233/NPM-190353.

Article  PubMed  CAS  Google Scholar 

Bonnefond A, Unnikrishnan R, Doria A, Vaxillaire M, Kulkarni RN, Mohan V, et al. Monogenic diabetes. Nat Rev Dis Primers. 2023;9(1):12. https://doi.org/10.1038/s41572-023-00421-w.

Article  PubMed  Google Scholar 

Slingerland AS, Hattersley AT. Mutations in the Kir6.2 subunit of the KATP channel and permanent neonatal diabetes: new insights and new treatment. Ann Med. 2005;37(3):186–95. https://doi.org/10.1080/07853890510007287.

Article  PubMed  CAS  Google Scholar 

De Leon DD, Stanley CA. Permanent Neonatal Diabetes Mellitus. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews((R)). Seattle (WA)1993

Seino S, Miki T. Physiological and pathophysiological roles of ATP-sensitive K+ channels. Prog Biophys Mol Biol. 2003;81(2):133–76. https://doi.org/10.1016/s0079-6107(02)00053-6.

Article  PubMed  CAS  Google Scholar 

De Franco E, Saint-Martin C, Brusgaard K, Knight Johnson AE, Aguilar-Bryan L, Bowman P, et al. Update of variants identified in the pancreatic beta-cell K(ATP) channel genes KCNJ11 and ABCC8 in individuals with congenital hyperinsulinism and diabetes. Hum Mutat. 2020;41(5):884–905. https://doi.org/10.1002/humu.23995.

Article  PubMed  CAS  Google Scholar 

Gopi S, Kavitha B, Kanthimathi S, Kannan A, Kumar R, Joshi R, et al. Genotype-phenotype correlation of K(ATP) channel gene defects causing permanent neonatal diabetes in Indian patients. Pediatr Diabetes. 2021;22(1):82–92. https://doi.org/10.1111/pedi.13109.

Article  PubMed  CAS  Google Scholar 

Marshall BA, Green RP, Wambach J, White NH, Remedi MS, Nichols CG. Remission of severe neonatal diabetes with very early sulfonylurea treatment. Diabetes Care. 2015;38(3):e38–9. https://doi.org/10.2337/dc14-2124.

Article  PubMed  PubMed Central  Google Scholar 

Cho JH, Kang E, Lee BH, Kim GH, Choi JH, Yoo HW. DEND Syndrome with Heterozygous KCNJ11 Mutation Successfully Treated with Sulfonylurea. J Korean Med Sci. 2017;32(6):1042–5. https://doi.org/10.3346/jkms.2017.32.6.1042.

Article  PubMed  PubMed Central  Google Scholar 

Hattersley AT, Ashcroft FM. Activating mutations in Kir6.2 and neonatal diabetes: new clinical syndromes, new scientific insights, and new therapy. Diabetes. 2005;54(9):2503–13. https://doi.org/10.2337/diabetes.54.9.2503.

Article  PubMed  CAS  Google Scholar 

Helmi MAM, Hussain S. Severe Developmental Delay, Epilepsy and Neonatal Diabetes (DEND) Syndrome: A Case Report. J Asean Fed Endocr S. 2020;35(1):125–8. https://doi.org/10.15605/jafes.035.01.22.

Article  Google Scholar 

Stoy J, Edghill EL, Flanagan SE, Ye H, Paz VP, Pluzhnikov A, et al. Insulin gene mutations as a cause of permanent neonatal diabetes. Proc Natl Acad Sci U S A. 2007;104(38):15040–4. https://doi.org/10.1073/pnas.0707291104.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Laurenzano SE, McFall C, Nguyen L, Savla D, Coufal NG, Wright MS, et al Neonatal diabetes mellitus due to a novel variant in the INS gene. Cold Spring Harb Mol Case Stud. 2019;5(4). https://doi.org/10.1101/mcs.a004085.

Ngoc CTB, Dung VC, De Franco E, Lan NN, Thao BP, Khanh NN, et al. Genetic Etiology of Neonatal Diabetes Mellitus in Vietnamese Infants and Characteristics of Those With INS Gene Mutations. Front Endocrinol (Lausanne). 2022;13:866573. https://doi.org/10.3389/fendo.2022.866573.

Article  PubMed  Google Scholar 

Taha D, Barbar M, Kanaan H, Williamson BJ. Neonatal diabetes mellitus, congenital hypothyroidism, hepatic fibrosis, polycystic kidneys, and congenital glaucoma: a new autosomal recessive syndrome? Am J Med Genet A. 2003;122A(3):269–73. https://doi.org/10.1002/ajmg.a.20267.

Article  PubMed  Google Scholar 

Dimitri P, Habeb AM, Gurbuz F, Millward A, Wallis S, Moussa K, et al. Expanding the Clinical Spectrum Associated With GLIS3 Mutations. J Clin Endocrinol Metab. 2015;100(10):E1362–9. https://doi.org/10.1210/jc.2015-1827.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Splittstoesser V, Vollbach H, Plamper M, Garbe W, De Franco E, Houghton JAL, et al Case Report: Extended Clinical Spectrum of the Neonatal Diabetes With Congenital Hypothyroidism Syndrome. Front Endocrinol. 2021;12. ARTN 665336 https://doi.org/10.3389/fendo.2021.665336.

Boddu PK, Velumula PK, Sharif S, Monika B. A Neonate With Diabetes Mellitus, Congenital Hypothyroidism, and Congenital Glaucoma. Cureus. 2022;14(9):e29488. https://doi.org/10.7759/cureus.29488.

Article  PubMed  PubMed Central  Google Scholar 

Senee V, Chelala C, Duchatelet S, Feng D, Blanc H, Cossec JC, et al. Mutations in GLIS3 are responsible for a rare syndrome with neonatal diabetes mellitus and congenital hypothyroidism. Nat Genet. 2006;38(6):682–7. https://doi.org/10.1038/ng1802.

Article  PubMed  CAS  Google Scholar 

Sarikaya E, Kendirci M, Demir M, Dundar M. Neonatal Diabetes, Congenital Hypothyroidism, and Congenital Glaucoma Coexistence: A Case of GLIS3 Mutation. J Clin Res Pediatr Endocrinol. 2023;15(4):426–30. https://doi.org/10.4274/jcrpe.galenos.2022.2021-12-19.

Article  PubMed  PubMed Central  Google Scholar 

Perdas E, Gadzalska K, Hrytsiuk I, Borowiec M, Fendler W, Mlynarski W. Case report: Neonatal diabetes mellitus with congenital hypothyroidism as a result of biallelic heterozygous mutations in GLIS3 gene. Pediatr Diabetes. 2022;23(6):668–74. https://doi.org/10.1111/pedi.13341.

Article  PubMed  Google Scholar 

Smith SB, Qu HQ, Taleb N, Kishimoto NY, Scheel DW, Lu Y, et al. Rfx6 directs islet formation and insulin production in mice and humans. Nature. 2010;463(7282):775–80. https://doi.org/10.1038/nature08748.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Mitchell J, Punthakee Z, Lo B, Bernard C, Chong K, Newman C, et al. Neonatal diabetes, with hypoplastic pancreas, intestinal atresia and gall bladder hypoplasia: search for the aetiology of a new autosomal recessive syndrome. Diabetologia. 2004;47(12):2160–7. https://doi.org/10.1007/s00125-004-1576-3.

Article  PubMed  CAS  Google Scholar 

Kambal MA, Al-Harbi DA, Al-Sunaid AR, Al-Atawi MS. Mitchell-Riley Syndrome Due to a Novel Mutation in RFX6. Front Pediatr. 2019;7:243. https://doi.org/10.3389/fped.2019.00243.

Article  PubMed  PubMed Central  Google Scholar 

Ng YS, Lim AZ, Panagiotou G, Turnbull DM, Walker M. Endocrine Manifestations and New Developments in Mitochondrial Disease. Endocr Rev. 2022;43(3):583–609. https://doi.org/10.1210/endrev/bnab036.

Article  PubMed  Google Scholar 

Pia S, Lui F. Melas Syndrome. StatPearls. Treasure Island (FL)2024

Finsterer J. Genetic, pathogenetic, and phenotypic implications of the mitochondrial A3243G tRNALeu(UUR) mutation. Acta Neurol Scand. 2007;116(1):1–14. https://doi.org/10.1111/j.1600-0404.2007.00836.x.

Article  PubMed  CAS  Google Scholar 

Seed LM, Dean A, Krishnakumar D, Phyu P, Horvath R, Harijan PD. Molecular and neurological features of MELAS syndrome in paediatric patients: A case series and review of the literature. Mol Genet Genomic Med. 2022;10(7):e1955. https://doi.org/10.1002/mgg3.1955.

Article  PubMed  PubMed Central  Google Scholar 

Yang M, Xu L, Xu C, Cui Y, Jiang S, Dong J, et al. The Mutations and Clinical Variability in Maternally Inherited Diabetes and Deafness: An Analysis of 161 Patients. Front Endocrinol (Lausanne). 2021;12:728043. https://doi.org/10.3389/fendo.2021.728043.

Article  PubMed  Google Scholar 

Comments (0)

No login
gif