Koboldt DC, Steinberg KM, Larson DE, Wilson RK, Mardis ER. The next-generation sequencing revolution and its impact on genomics. Cell. 2013;155(1):27–38. https://doi.org/10.1016/j.cell.2013.09.006.
Article PubMed PubMed Central CAS Google Scholar
Murphy R, Colclough K, Pollin TI, Ikle JM, Svalastoga P, Maloney KA, et al. The use of precision diagnostics for monogenic diabetes: a systematic review and expert opinion. Commun Med (Lond). 2023;3(1):136. https://doi.org/10.1038/s43856-023-00369-8.
Yahaya TO, Anyebe DA. Genes predisposing to neonatal diabetes mellitus and pathophysiology: Current findings. J Neonatal Perinatal Med. 2020;13(4):543–53. https://doi.org/10.3233/NPM-190353.
Article PubMed CAS Google Scholar
Bonnefond A, Unnikrishnan R, Doria A, Vaxillaire M, Kulkarni RN, Mohan V, et al. Monogenic diabetes. Nat Rev Dis Primers. 2023;9(1):12. https://doi.org/10.1038/s41572-023-00421-w.
Slingerland AS, Hattersley AT. Mutations in the Kir6.2 subunit of the KATP channel and permanent neonatal diabetes: new insights and new treatment. Ann Med. 2005;37(3):186–95. https://doi.org/10.1080/07853890510007287.
Article PubMed CAS Google Scholar
De Leon DD, Stanley CA. Permanent Neonatal Diabetes Mellitus. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews((R)). Seattle (WA)1993
Seino S, Miki T. Physiological and pathophysiological roles of ATP-sensitive K+ channels. Prog Biophys Mol Biol. 2003;81(2):133–76. https://doi.org/10.1016/s0079-6107(02)00053-6.
Article PubMed CAS Google Scholar
De Franco E, Saint-Martin C, Brusgaard K, Knight Johnson AE, Aguilar-Bryan L, Bowman P, et al. Update of variants identified in the pancreatic beta-cell K(ATP) channel genes KCNJ11 and ABCC8 in individuals with congenital hyperinsulinism and diabetes. Hum Mutat. 2020;41(5):884–905. https://doi.org/10.1002/humu.23995.
Article PubMed CAS Google Scholar
Gopi S, Kavitha B, Kanthimathi S, Kannan A, Kumar R, Joshi R, et al. Genotype-phenotype correlation of K(ATP) channel gene defects causing permanent neonatal diabetes in Indian patients. Pediatr Diabetes. 2021;22(1):82–92. https://doi.org/10.1111/pedi.13109.
Article PubMed CAS Google Scholar
Marshall BA, Green RP, Wambach J, White NH, Remedi MS, Nichols CG. Remission of severe neonatal diabetes with very early sulfonylurea treatment. Diabetes Care. 2015;38(3):e38–9. https://doi.org/10.2337/dc14-2124.
Article PubMed PubMed Central Google Scholar
Cho JH, Kang E, Lee BH, Kim GH, Choi JH, Yoo HW. DEND Syndrome with Heterozygous KCNJ11 Mutation Successfully Treated with Sulfonylurea. J Korean Med Sci. 2017;32(6):1042–5. https://doi.org/10.3346/jkms.2017.32.6.1042.
Article PubMed PubMed Central Google Scholar
Hattersley AT, Ashcroft FM. Activating mutations in Kir6.2 and neonatal diabetes: new clinical syndromes, new scientific insights, and new therapy. Diabetes. 2005;54(9):2503–13. https://doi.org/10.2337/diabetes.54.9.2503.
Article PubMed CAS Google Scholar
Helmi MAM, Hussain S. Severe Developmental Delay, Epilepsy and Neonatal Diabetes (DEND) Syndrome: A Case Report. J Asean Fed Endocr S. 2020;35(1):125–8. https://doi.org/10.15605/jafes.035.01.22.
Stoy J, Edghill EL, Flanagan SE, Ye H, Paz VP, Pluzhnikov A, et al. Insulin gene mutations as a cause of permanent neonatal diabetes. Proc Natl Acad Sci U S A. 2007;104(38):15040–4. https://doi.org/10.1073/pnas.0707291104.
Article PubMed PubMed Central CAS Google Scholar
Laurenzano SE, McFall C, Nguyen L, Savla D, Coufal NG, Wright MS, et al Neonatal diabetes mellitus due to a novel variant in the INS gene. Cold Spring Harb Mol Case Stud. 2019;5(4). https://doi.org/10.1101/mcs.a004085.
Ngoc CTB, Dung VC, De Franco E, Lan NN, Thao BP, Khanh NN, et al. Genetic Etiology of Neonatal Diabetes Mellitus in Vietnamese Infants and Characteristics of Those With INS Gene Mutations. Front Endocrinol (Lausanne). 2022;13:866573. https://doi.org/10.3389/fendo.2022.866573.
Taha D, Barbar M, Kanaan H, Williamson BJ. Neonatal diabetes mellitus, congenital hypothyroidism, hepatic fibrosis, polycystic kidneys, and congenital glaucoma: a new autosomal recessive syndrome? Am J Med Genet A. 2003;122A(3):269–73. https://doi.org/10.1002/ajmg.a.20267.
Dimitri P, Habeb AM, Gurbuz F, Millward A, Wallis S, Moussa K, et al. Expanding the Clinical Spectrum Associated With GLIS3 Mutations. J Clin Endocrinol Metab. 2015;100(10):E1362–9. https://doi.org/10.1210/jc.2015-1827.
Article PubMed PubMed Central CAS Google Scholar
Splittstoesser V, Vollbach H, Plamper M, Garbe W, De Franco E, Houghton JAL, et al Case Report: Extended Clinical Spectrum of the Neonatal Diabetes With Congenital Hypothyroidism Syndrome. Front Endocrinol. 2021;12. ARTN 665336 https://doi.org/10.3389/fendo.2021.665336.
Boddu PK, Velumula PK, Sharif S, Monika B. A Neonate With Diabetes Mellitus, Congenital Hypothyroidism, and Congenital Glaucoma. Cureus. 2022;14(9):e29488. https://doi.org/10.7759/cureus.29488.
Article PubMed PubMed Central Google Scholar
Senee V, Chelala C, Duchatelet S, Feng D, Blanc H, Cossec JC, et al. Mutations in GLIS3 are responsible for a rare syndrome with neonatal diabetes mellitus and congenital hypothyroidism. Nat Genet. 2006;38(6):682–7. https://doi.org/10.1038/ng1802.
Article PubMed CAS Google Scholar
Sarikaya E, Kendirci M, Demir M, Dundar M. Neonatal Diabetes, Congenital Hypothyroidism, and Congenital Glaucoma Coexistence: A Case of GLIS3 Mutation. J Clin Res Pediatr Endocrinol. 2023;15(4):426–30. https://doi.org/10.4274/jcrpe.galenos.2022.2021-12-19.
Article PubMed PubMed Central Google Scholar
Perdas E, Gadzalska K, Hrytsiuk I, Borowiec M, Fendler W, Mlynarski W. Case report: Neonatal diabetes mellitus with congenital hypothyroidism as a result of biallelic heterozygous mutations in GLIS3 gene. Pediatr Diabetes. 2022;23(6):668–74. https://doi.org/10.1111/pedi.13341.
Smith SB, Qu HQ, Taleb N, Kishimoto NY, Scheel DW, Lu Y, et al. Rfx6 directs islet formation and insulin production in mice and humans. Nature. 2010;463(7282):775–80. https://doi.org/10.1038/nature08748.
Article PubMed PubMed Central CAS Google Scholar
Mitchell J, Punthakee Z, Lo B, Bernard C, Chong K, Newman C, et al. Neonatal diabetes, with hypoplastic pancreas, intestinal atresia and gall bladder hypoplasia: search for the aetiology of a new autosomal recessive syndrome. Diabetologia. 2004;47(12):2160–7. https://doi.org/10.1007/s00125-004-1576-3.
Article PubMed CAS Google Scholar
Kambal MA, Al-Harbi DA, Al-Sunaid AR, Al-Atawi MS. Mitchell-Riley Syndrome Due to a Novel Mutation in RFX6. Front Pediatr. 2019;7:243. https://doi.org/10.3389/fped.2019.00243.
Article PubMed PubMed Central Google Scholar
Ng YS, Lim AZ, Panagiotou G, Turnbull DM, Walker M. Endocrine Manifestations and New Developments in Mitochondrial Disease. Endocr Rev. 2022;43(3):583–609. https://doi.org/10.1210/endrev/bnab036.
Pia S, Lui F. Melas Syndrome. StatPearls. Treasure Island (FL)2024
Finsterer J. Genetic, pathogenetic, and phenotypic implications of the mitochondrial A3243G tRNALeu(UUR) mutation. Acta Neurol Scand. 2007;116(1):1–14. https://doi.org/10.1111/j.1600-0404.2007.00836.x.
Article PubMed CAS Google Scholar
Seed LM, Dean A, Krishnakumar D, Phyu P, Horvath R, Harijan PD. Molecular and neurological features of MELAS syndrome in paediatric patients: A case series and review of the literature. Mol Genet Genomic Med. 2022;10(7):e1955. https://doi.org/10.1002/mgg3.1955.
Article PubMed PubMed Central Google Scholar
Yang M, Xu L, Xu C, Cui Y, Jiang S, Dong J, et al. The Mutations and Clinical Variability in Maternally Inherited Diabetes and Deafness: An Analysis of 161 Patients. Front Endocrinol (Lausanne). 2021;12:728043. https://doi.org/10.3389/fendo.2021.728043.
Comments (0)