Targeting neutrophils for cancer therapy

Hidalgo, A., Chilvers, E. R., Summers, C. & Koenderman, L. The neutrophil life cycle. Trends Immunol. 40, 584–597 (2019).

Article  CAS  PubMed  Google Scholar 

Hedrick, C. C. & Malanchi, I. Neutrophils in cancer: heterogeneous and multifaceted. Nat. Rev. Immunol. 22, 173–187 (2022).

Article  CAS  PubMed  Google Scholar 

Coffelt, S. B., Wellenstein, M. D. & de Visser, K. E. Neutrophils in cancer: neutral no more. Nat. Rev. Cancer 16, 431–446 (2016).

Article  CAS  PubMed  Google Scholar 

Quail, D. F. et al. Neutrophil phenotypes and functions in cancer: a consensus statement. J. Exp. Med. 219, e20220011 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jaillon, S. et al. Neutrophil diversity and plasticity in tumour progression and therapy. Nat. Rev. Cancer 20, 485–503 (2020).

Article  CAS  PubMed  Google Scholar 

Ballesteros, I. et al. Co-option of neutrophil fates by tissue environments. Cell 183, 1282–1297.e1218 (2020). This seminal article reported that tissues can co-opt neutrophil fates to serve tissue specific roles and thus demonstrated an unprecedented level of neutrophil heterogeneity.

Article  CAS  PubMed  Google Scholar 

Xie, X. et al. Single-cell transcriptome profiling reveals neutrophil heterogeneity in homeostasis and infection. Nat. Immunol. 21, 1119–1133 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Grieshaber-Bouyer, R. et al. The neutrotime transcriptional signature defines a single continuum of neutrophils across biological compartments. Nat. Commun. 12, 2856 (2021). This article provides an original description of neutrotime, a novel classification schema based on of a single, chronologically ordered neutrophil developmental spectrum.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hackert, N. S. et al. Human and mouse neutrophils share core transcriptional programs in both homeostatic and inflamed contexts. Nat. Commun. 14, 8133 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wigerblad, G. et al. Single-cell analysis reveals the range of transcriptional states of circulating human neutrophils. J. Immunol. 209, 772–782 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Montaldo, E. et al. Cellular and transcriptional dynamics of human neutrophils at steady state and upon stress. Nat. Immunol. 23, 1470–1483 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Matlung, H. L. et al. Neutrophils kill antibody-opsonized cancer cells by trogoptosis. Cell Rep. 23, 3946–3959.e3946 (2018).

Article  CAS  PubMed  Google Scholar 

Gungabeesoon, J. et al. A neutrophil response linked to tumor control in immunotherapy. Cell 186, 1448–1464.e1420 (2023). This was the first report to show that neutrophils could be therapeutically polarized into antitumour phenotypes using immunotherapeutic approaches.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kwok, I. et al. Combinatorial single-cell analyses of granulocyte–monocyte progenitor heterogeneity reveals an early uni-potent neutrophil progenitor. Immunity 53, 303–318.e305 (2020).

Article  CAS  PubMed  Google Scholar 

Zhu, Y. P. et al. Identification of an early unipotent neutrophil progenitor with pro-tumoral activity in mouse and human bone marrow. Cell Rep. 24, 2329–2341.e2328 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Evrard, M. et al. Developmental analysis of bone marrow neutrophils reveals populations specialized in expansion, trafficking, and effector functions. Immunity 48, 364–379.e368 (2018).

Article  CAS  PubMed  Google Scholar 

Calzetti, F. et al. CD66b−CD64dimCD115− cells in the human bone marrow represent neutrophil-committed progenitors. Nat. Immunol. 23, 679–691 (2022).

Article  CAS  PubMed  Google Scholar 

Palomino-Segura, M., Sicilia, J., Ballesteros, I. & Hidalgo, A. Strategies of neutrophil diversification. Nat. Immunol. 24, 575–584 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Engblom, C. et al. Osteoblasts remotely supply lung tumors with cancer-promoting SiglecFhigh neutrophils. Science 358, eaal5081 (2017). This study demonstrates that adenocarcinomas induce bone marrow stromal cells to supply a unique subset of SiglecF-high tumour-promoting neutrophils to sites of tumorigenesis.

Article  PubMed  PubMed Central  Google Scholar 

Pfirschke, C. et al. Tumor-promoting Ly-6G+ SiglecFhigh cells are mature and long-lived neutrophils. Cell Rep. 32, 108164 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yvan-Charvet, L. & Ng, L. G. Granulopoiesis and neutrophil homeostasis: a metabolic, daily balancing act. Trends Immunol. 40, 598–612 (2019).

Article  CAS  PubMed  Google Scholar 

Lawrence, S. M., Corriden, R. & Nizet, V. How neutrophils meet their end. Trends Immunol. 41, 531–544 (2020).

Article  CAS  PubMed  Google Scholar 

Martin, C. et al. Chemokines acting via CXCR2 and CXCR4 control the release of neutrophils from the bone marrow and their return following senescence. Immunity 19, 583–593 (2003).

Article  CAS  PubMed  Google Scholar 

Mathias, J. R. et al. Resolution of inflammation by retrograde chemotaxis of neutrophils in transgenic zebrafish. J. Leukoc. Biol. 80, 1281–1288 (2006).

Article  CAS  PubMed  Google Scholar 

Wang, J. et al. Visualizing the function and fate of neutrophils in sterile injury and repair. Science 358, 111–116 (2017).

Article  CAS  PubMed  Google Scholar 

Wu, D. et al. Reverse-migrated neutrophils regulated by JAM-C are involved in acute pancreatitis-associated lung injury. Sci. Rep. 6, 20545 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hind, L. E. & Huttenlocher, A. Neutrophil reverse migration and a chemokinetic resolution. Dev. Cell 47, 404–405 (2018).

Article  CAS  PubMed  Google Scholar 

Brostjan, C. & Oehler, R. The role of neutrophil death in chronic inflammation and cancer. Cell Death Discov. 6, 26 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Greenlee-Wacker, M. C. Clearance of apoptotic neutrophils and resolution of inflammation. Immunol. Rev. 273, 357–370 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brinkmann, V. et al. Neutrophil extracellular traps kill bacteria. Science 303, 1532–1535 (2004).

Article  CAS  PubMed  Google Scholar 

Comments (0)

No login
gif