Sporogen-AO1 inhibits eukaryotic translation elongation

Tanaka S, et al. Isolation of Sporogen-AO1, a Sporogenic Substance, from Aspergillus oryzae. Agricultural Biol Chem. 1984;48:3189–91.

CAS  Google Scholar 

Seiichi T, et al. Structure of sporogen-AO 1, a sporogenic substance of Aspergillus oryzae. Tetrahedron Lett. 1984;25:5907–10.

Google Scholar 

Kitahara T, Kurata H, Mori K. Efficient synthesis of the natural enantiomer of sporogen-AO 1 (13-desoxyphomenone) A sporogenic sesquiterpene from Aspergillus oryzae. Tetrahedron. 1988;44;4339–49.

CAS  Google Scholar 

Kitahara T, Kurata H, Mori K. PB82 CHIRAL SYNTHESIS OF ELEMOPHILANE SESQUITERPENES (SPOROGEN-AO 1, PHOMENONE ETC) AS BIOREGULATORS. Int Symp Chem Nat Products. 1988;1988:328.

Google Scholar 

Tamogami S, et al. Synthesis of the 5-demethyl-6-deoxy analogue of sporogen AO-1, a sporogenic substance of Aspergillus oryzae. Biosci Biotechnol Biochem. 1996;60;1372–4.

CAS  Google Scholar 

Daengrot C, et al. Eremophilane sesquiterpenes and diphenyl thioethers from the soil fungus Penicillium copticola PSU-RSPG138. J Nat Products. 2015;78:615–22.

CAS  Google Scholar 

Yurchenko AN, et al. Biologically active metabolites of the facultative marine fungus Penicillium citrinum. Chem Nat Compd. 2013;48:996–8.

CAS  Google Scholar 

Le HM, et al. Chemical composition and biological activities of metabolites from the marine fungi Penicillium sp. isolated from sediments of Co To Island, Vietnam. Molecules. 2019;24, https://doi.org/10.3390/molecules24213830.

Mikami S, Kobayashi T, Imataka H. Cell-free protein synthesis systems with extracts from cultured human cells. Methods Mol Biol. 2010;607:43–52.

CAS  PubMed  Google Scholar 

Mikami S, et al. A human cell-derived in vitro coupled transcription/translation system optimized for production of recombinant proteins. Protein Expr Purif. 2008;62:190–8.

CAS  PubMed  Google Scholar 

Machida K, et al. High-throughput screening for a SARS-CoV-2 frameshifting inhibitor using a cell-free protein synthesis system. Biotechniques. 2024;76:161–8.

CAS  PubMed  Google Scholar 

Machida K, et al. Dynamic interaction of poly(A)-binding protein with the ribosome. Sci Rep. 2018;8:17435.

PubMed  PubMed Central  Google Scholar 

Abe T, et al. Reconstitution of yeast translation elongation and termination in vitro utilizing CrPV IRES-containing mRNA. J Biochem. 2020;167:441–50.

CAS  PubMed  Google Scholar 

Machida K, et al. A translation system reconstituted with human factors proves that processing of encephalomyocarditis virus proteins 2A and 2B occurs in the elongation phase of translation without eukaryotic release factors. J Biol Chem. 2014;289:31960–71.

CAS  PubMed  PubMed Central  Google Scholar 

Donnelly MLL, et al. Analysis of the aphthovirus 2A/2B polyprotein ‘cleavage’ mechanism indicates not a proteolytic reaction, but a novel translational effect: a putative ribosomal ‘skip. J Gen Virol. 2001;82:1013–25.

CAS  PubMed  Google Scholar 

Pisareva VP, et al. Translation initiation on mammalian mRNAs with structured 5’UTRs requires DExH-box protein DHX29. Cell. 2008;135:1237–50.

CAS  PubMed  PubMed Central  Google Scholar 

Pestova TV, Hellen CU, Shatsky IN. Canonical eukaryotic initiation factors determine initiation of translation by internal ribosomal entry. Mol Cell Biol. 1996;16:6859–69.

CAS  PubMed  PubMed Central  Google Scholar 

Pestova TV, et al. A prokaryotic-like mode of cytoplasmic eukaryotic ribosome binding to the initiation codon during internal translation initiation of hepatitis C and classical swine fever virus. RNAs Genes Dev. 1998;12:67–83.

CAS  PubMed  Google Scholar 

Pestova TV, Hellen CU. Translation elongation after assembly of ribosomes on the Cricket paralysis virus internal ribosomal entry site without initiation factors or initiator tRNA. Genes Dev. 2003;17:181–6.

CAS  PubMed  PubMed Central  Google Scholar 

Brönstrup M, Sasse F. Natural products targeting the elongation phase of eukaryotic protein biosynthesis. Nat Prod Rep. 2020;37:752–62.

PubMed  Google Scholar 

Grzmil M, Hemmings BA. Translation regulation as a therapeutic target in cancer. Cancer Res. 2012;72:3891–900.

CAS  PubMed  Google Scholar 

Sridharan S, et al. Targeting of the Eukaryotic Translation Initiation Factor 4A Against Breast Cancer Stemness. Front Oncol. 2019;9;1311.

PubMed  PubMed Central  Google Scholar 

Comments (0)

No login
gif