Skeletal muscle atrophy and dysfunction in obesity and type-2 diabetes mellitus: Myocellular mechanisms involved

Boutari C, DeMarsilis A, Mantzoros CS. Obesity and diabetes. Diabetes Res Clin Pract. 2023;202(110773). https://doi.org/10.1016/j.diabres.2023.110773.

Zhou B, Rayner AW, Gregg EW, Sheffer KE, Carrillo-Larco RM, Bennett JE, et al. Worldwide trends in diabetes prevalence and treatment from 1990 to 2022: a pooled analysis of 1108 population-representative studies with 141 million participants. Lancet. 2024;404(10467):2077–93.

Article  Google Scholar 

Phelps NH, Singleton RK, Zhou B, Heap RA, Mishra A, Bennett JE, et al. Worldwide trends in underweight and obesity from 1990 to 2022: a pooled analysis of 3663 population-representative studies with 222 million children, adolescents, and adults. Lancet. 2024;403(10431):1027–50.

Article  Google Scholar 

Bell JA, Kivimaki M, Hamer M. Metabolically healthy obesity and risk of incident type 2 diabetes: a meta-analysis of prospective cohort studies. Obes Rev. 2014;15(6):504–15.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Abdullah A, Peeters A, de Courten M, Stoelwinder J. The magnitude of association between overweight and obesity and the risk of diabetes: A meta-analysis of prospective cohort studies. Diabetes Res Clin Pract. 2010;89(3):309–19. https://doi.org/10.1016/j.diabres.2010.04.012.

Article  PubMed  Google Scholar 

Jayedi A, Soltani S, Motlagh SZ-t, Emadi A, Shahinfar H, Moosavi H, et al. Anthropometric and adiposity indicators and risk of type 2 diabetes: systematic review and dose-response meta-analysis of cohort studies. Bmj. 2022;376(e067516). https://doi.org/10.1136/bmj-2021-067516.

Piché ME, Tchernof A, Després JP. Obesity phenotypes, diabetes, and cardiovascular diseases. Circ Res. 2020;126(11):1477–500. https://doi.org/10.1161/circresaha.120.316101.

Article  PubMed  Google Scholar 

Michaelidou M, Pappachan JM, Jeeyavudeen MS. Management of diabesity: Current concepts. World J Diabetes. 2023;14(4):396–411. https://doi.org/10.4239/wjd.v14.i4.396.

Article  PubMed  PubMed Central  Google Scholar 

Frontera WR, Ochala J. Skeletal muscle: a brief review of structure and function. Calcif Tissue Int. 2015;96(3):183–95. https://doi.org/10.1007/s00223-014-9915-y.

Article  CAS  PubMed  Google Scholar 

Murray B, Rosenbloom C. Fundamentals of glycogen metabolism for coaches and athletes. Nutr Rev. 2018;76(4):243–59.

Article  PubMed  PubMed Central  Google Scholar 

DeFronzo RA, Jacot E, Jequier E, Maeder E, Wahren J, Felber JP. The effect of insulin on the disposal of intravenous glucose: results from indirect calorimetry and hepatic and femoral venous catheterization. Diabetes. 1981;30(12):1000–7. https://doi.org/10.2337/diab.30.12.1000.

Article  CAS  PubMed  Google Scholar 

Zurlo F, Larson K, Bogardus C, Ravussin E. Skeletal muscle metabolism is a major determinant of resting energy expenditure. J Clin Investig. 1990;86(5):1423–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pedersen BK, Febbraio MA. Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat Rev Endocrinol. 2012;8(8):457–65. https://doi.org/10.1038/nrendo.2012.49.

Article  CAS  PubMed  Google Scholar 

Argilés JM, Campos N, Lopez-Pedrosa JM, Rueda R, Rodriguez-Mañas L. Skeletal muscle regulates metabolism via interorgan crosstalk: roles in health and disease. J Am Med Dir Assoc. 2016;17(9):789–96.

Article  PubMed  Google Scholar 

Pileggi CA, Parmar G, Harper M-E. The lifecycle of skeletal muscle mitochondria in obesity. Obes Rev. 2021;22(5):e13164. https://doi.org/10.1111/obr.13164.

Article  CAS  PubMed  Google Scholar 

Blüher M. Metabolically healthy obesity. Endocrine Reviews. 2020;41(3):bnaa004. https://doi.org/10.1210/endrev/bnaa004.

Article  PubMed  PubMed Central  Google Scholar 

Izzo A, Massimino E, Riccardi G, Della PG. A narrative review on sarcopenia in type 2 diabetes mellitus: prevalence and associated factors. Nutrients. 2021;13(1):183.

Article  PubMed  PubMed Central  Google Scholar 

Park SW, Goodpaster BH, Lee JS, Kuller LH, Boudreau R, De Rekeneire N, et al. Excessive loss of skeletal muscle mass in older adults with type 2 diabetes. Diabetes Care. 2009;32(11):1993–7.

Article  PubMed  PubMed Central  Google Scholar 

Kim TN, Park MS, Yang SJ, Yoo HJ, Kang HJ, Song W, et al. Prevalence and determinant factors of sarcopenia in patients with type 2 diabetes: the Korean Sarcopenic Obesity Study (KSOS). Diabetes Care. 2010;33(7):1497–9.

Article  PubMed  PubMed Central  Google Scholar 

Andersen H, Nielsen S, Mogensen CE, Jakobsen J. Muscle strength in type 2 diabetes. Diabetes. 2004;53(6):1543–8. https://doi.org/10.2337/diabetes.53.6.1543.

Article  CAS  PubMed  Google Scholar 

Anagnostis P, Gkekas NK, Achilla C, Pananastasiou G, Taouxidou P, Mitsiou M, et al. Type 2 diabetes mellitus is associated with increased risk of sarcopenia: a systematic review and meta-analysis. Calcif Tissue Int. 2020;107:453–63.

Article  CAS  PubMed  Google Scholar 

Choi SJ, Files DC, Zhang T, Wang Z-M, Messi ML, Gregory H, et al. Intramyocellular lipid and impaired myofiber contraction in normal weight and obese older adults. J Gerontol: Ser A. 2015;71(4):557–64. https://doi.org/10.1093/gerona/glv169.

Article  Google Scholar 

Smeuninx B, McKendry J, Wilson D, Martin U, Breen L. Age-related anabolic resistance of myofibrillar protein synthesis is exacerbated in obese inactive individuals. J Clin Endocrinol Metab. 2017;102(9):3535–45. https://doi.org/10.1210/jc.2017-00869.

Article  PubMed  PubMed Central  Google Scholar 

Hulens M, Vansant G, Lysens R, Claessens AL, Muls E, Brumagne S. Study of differences in peripheral muscle strength of lean versus obese women: an allometric approach. Int J Obes. 2001;25(5):676–81. https://doi.org/10.1038/sj.ijo.0801560.

Article  CAS  Google Scholar 

Tomlinson DJ, Erskine RM, Morse CI, Winwood K, Onambélé-Pearson G. The impact of obesity on skeletal muscle strength and structure through adolescence to old age. Biogerontology. 2016;17(3):467–83. https://doi.org/10.1007/s10522-015-9626-4.

Article  CAS  PubMed  Google Scholar 

Tomlinson DJ, Erskine RM, Morse CI, Winwood K, Onambélé-Pearson GL. Combined effects of body composition and ageing on joint torque, muscle activation and co-contraction in sedentary women. Age (Dordr). 2014;36(3):9652. https://doi.org/10.1007/s11357-014-9652-1.

Article  CAS  PubMed  PubMed Central  Google Scholar 

MÅrin P, Andersson B, Krotkiewski M, Björntorp P. Muscle fiber composition and capillary density in women and men with NIDDM. Diabetes Care. 1994;17(5):382–6.

Article  PubMed  Google Scholar 

Oberbach A, Bossenz Y, Lehmann S, Niebauer J, Adams V, Paschke R, et al. Altered fiber distribution and fiber-specific glycolytic and oxidative enzyme activity in skeletal muscle of patients with type 2 diabetes. Diabetes Care. 2006;29(4):895–900.

Article  CAS  PubMed  Google Scholar 

Gaster M, Staehr P, Beck-Nielsen H, Schrøder HD, Handberg A. GLUT4 is reduced in slow muscle fibers of type 2 diabetic patients: is insulin resistance in type 2 diabetes a slow, type 1 fiber disease? Diabetes. 2001;50(6):1324–9.

Article  CAS  PubMed  Google Scholar 

Frankenberg NT, Mason SA, Wadley GD, Murphy RM. Skeletal muscle cell-specific differences in type 2 diabetes. Cell Mol Life Sci. 2022;79(5):256.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Helge JW, Fraser AM, Kriketos AD, Jenkins AB, Calvert GD, Ayre KJ, et al. Interrelationships between muscle fibre type, substrate oxidation and body fat. Int J Obes. 1999;23(9):986–91. https://doi.org/10.1038/sj.ijo.0801030.

Article  CAS  Google Scholar 

Kriketos AD, Pan DA, Lillioja S, Cooney GJ, Baur LA, Milner MR, et al. Interrelationships between muscle morphology, insulin action, and adiposity. Am J Physiol. 1996;270(6 Pt 2):R1332–9. https://doi.org/10.1152/ajpregu.1996.270.6.R1332.

Comments (0)

No login
gif