Boutari C, DeMarsilis A, Mantzoros CS. Obesity and diabetes. Diabetes Res Clin Pract. 2023;202(110773). https://doi.org/10.1016/j.diabres.2023.110773.
Zhou B, Rayner AW, Gregg EW, Sheffer KE, Carrillo-Larco RM, Bennett JE, et al. Worldwide trends in diabetes prevalence and treatment from 1990 to 2022: a pooled analysis of 1108 population-representative studies with 141 million participants. Lancet. 2024;404(10467):2077–93.
Phelps NH, Singleton RK, Zhou B, Heap RA, Mishra A, Bennett JE, et al. Worldwide trends in underweight and obesity from 1990 to 2022: a pooled analysis of 3663 population-representative studies with 222 million children, adolescents, and adults. Lancet. 2024;403(10431):1027–50.
Bell JA, Kivimaki M, Hamer M. Metabolically healthy obesity and risk of incident type 2 diabetes: a meta-analysis of prospective cohort studies. Obes Rev. 2014;15(6):504–15.
Article CAS PubMed PubMed Central Google Scholar
Abdullah A, Peeters A, de Courten M, Stoelwinder J. The magnitude of association between overweight and obesity and the risk of diabetes: A meta-analysis of prospective cohort studies. Diabetes Res Clin Pract. 2010;89(3):309–19. https://doi.org/10.1016/j.diabres.2010.04.012.
Jayedi A, Soltani S, Motlagh SZ-t, Emadi A, Shahinfar H, Moosavi H, et al. Anthropometric and adiposity indicators and risk of type 2 diabetes: systematic review and dose-response meta-analysis of cohort studies. Bmj. 2022;376(e067516). https://doi.org/10.1136/bmj-2021-067516.
Piché ME, Tchernof A, Després JP. Obesity phenotypes, diabetes, and cardiovascular diseases. Circ Res. 2020;126(11):1477–500. https://doi.org/10.1161/circresaha.120.316101.
Michaelidou M, Pappachan JM, Jeeyavudeen MS. Management of diabesity: Current concepts. World J Diabetes. 2023;14(4):396–411. https://doi.org/10.4239/wjd.v14.i4.396.
Article PubMed PubMed Central Google Scholar
Frontera WR, Ochala J. Skeletal muscle: a brief review of structure and function. Calcif Tissue Int. 2015;96(3):183–95. https://doi.org/10.1007/s00223-014-9915-y.
Article CAS PubMed Google Scholar
Murray B, Rosenbloom C. Fundamentals of glycogen metabolism for coaches and athletes. Nutr Rev. 2018;76(4):243–59.
Article PubMed PubMed Central Google Scholar
DeFronzo RA, Jacot E, Jequier E, Maeder E, Wahren J, Felber JP. The effect of insulin on the disposal of intravenous glucose: results from indirect calorimetry and hepatic and femoral venous catheterization. Diabetes. 1981;30(12):1000–7. https://doi.org/10.2337/diab.30.12.1000.
Article CAS PubMed Google Scholar
Zurlo F, Larson K, Bogardus C, Ravussin E. Skeletal muscle metabolism is a major determinant of resting energy expenditure. J Clin Investig. 1990;86(5):1423–7.
Article CAS PubMed PubMed Central Google Scholar
Pedersen BK, Febbraio MA. Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat Rev Endocrinol. 2012;8(8):457–65. https://doi.org/10.1038/nrendo.2012.49.
Article CAS PubMed Google Scholar
Argilés JM, Campos N, Lopez-Pedrosa JM, Rueda R, Rodriguez-Mañas L. Skeletal muscle regulates metabolism via interorgan crosstalk: roles in health and disease. J Am Med Dir Assoc. 2016;17(9):789–96.
Pileggi CA, Parmar G, Harper M-E. The lifecycle of skeletal muscle mitochondria in obesity. Obes Rev. 2021;22(5):e13164. https://doi.org/10.1111/obr.13164.
Article CAS PubMed Google Scholar
Blüher M. Metabolically healthy obesity. Endocrine Reviews. 2020;41(3):bnaa004. https://doi.org/10.1210/endrev/bnaa004.
Article PubMed PubMed Central Google Scholar
Izzo A, Massimino E, Riccardi G, Della PG. A narrative review on sarcopenia in type 2 diabetes mellitus: prevalence and associated factors. Nutrients. 2021;13(1):183.
Article PubMed PubMed Central Google Scholar
Park SW, Goodpaster BH, Lee JS, Kuller LH, Boudreau R, De Rekeneire N, et al. Excessive loss of skeletal muscle mass in older adults with type 2 diabetes. Diabetes Care. 2009;32(11):1993–7.
Article PubMed PubMed Central Google Scholar
Kim TN, Park MS, Yang SJ, Yoo HJ, Kang HJ, Song W, et al. Prevalence and determinant factors of sarcopenia in patients with type 2 diabetes: the Korean Sarcopenic Obesity Study (KSOS). Diabetes Care. 2010;33(7):1497–9.
Article PubMed PubMed Central Google Scholar
Andersen H, Nielsen S, Mogensen CE, Jakobsen J. Muscle strength in type 2 diabetes. Diabetes. 2004;53(6):1543–8. https://doi.org/10.2337/diabetes.53.6.1543.
Article CAS PubMed Google Scholar
Anagnostis P, Gkekas NK, Achilla C, Pananastasiou G, Taouxidou P, Mitsiou M, et al. Type 2 diabetes mellitus is associated with increased risk of sarcopenia: a systematic review and meta-analysis. Calcif Tissue Int. 2020;107:453–63.
Article CAS PubMed Google Scholar
Choi SJ, Files DC, Zhang T, Wang Z-M, Messi ML, Gregory H, et al. Intramyocellular lipid and impaired myofiber contraction in normal weight and obese older adults. J Gerontol: Ser A. 2015;71(4):557–64. https://doi.org/10.1093/gerona/glv169.
Smeuninx B, McKendry J, Wilson D, Martin U, Breen L. Age-related anabolic resistance of myofibrillar protein synthesis is exacerbated in obese inactive individuals. J Clin Endocrinol Metab. 2017;102(9):3535–45. https://doi.org/10.1210/jc.2017-00869.
Article PubMed PubMed Central Google Scholar
Hulens M, Vansant G, Lysens R, Claessens AL, Muls E, Brumagne S. Study of differences in peripheral muscle strength of lean versus obese women: an allometric approach. Int J Obes. 2001;25(5):676–81. https://doi.org/10.1038/sj.ijo.0801560.
Tomlinson DJ, Erskine RM, Morse CI, Winwood K, Onambélé-Pearson G. The impact of obesity on skeletal muscle strength and structure through adolescence to old age. Biogerontology. 2016;17(3):467–83. https://doi.org/10.1007/s10522-015-9626-4.
Article CAS PubMed Google Scholar
Tomlinson DJ, Erskine RM, Morse CI, Winwood K, Onambélé-Pearson GL. Combined effects of body composition and ageing on joint torque, muscle activation and co-contraction in sedentary women. Age (Dordr). 2014;36(3):9652. https://doi.org/10.1007/s11357-014-9652-1.
Article CAS PubMed PubMed Central Google Scholar
MÅrin P, Andersson B, Krotkiewski M, Björntorp P. Muscle fiber composition and capillary density in women and men with NIDDM. Diabetes Care. 1994;17(5):382–6.
Oberbach A, Bossenz Y, Lehmann S, Niebauer J, Adams V, Paschke R, et al. Altered fiber distribution and fiber-specific glycolytic and oxidative enzyme activity in skeletal muscle of patients with type 2 diabetes. Diabetes Care. 2006;29(4):895–900.
Article CAS PubMed Google Scholar
Gaster M, Staehr P, Beck-Nielsen H, Schrøder HD, Handberg A. GLUT4 is reduced in slow muscle fibers of type 2 diabetic patients: is insulin resistance in type 2 diabetes a slow, type 1 fiber disease? Diabetes. 2001;50(6):1324–9.
Article CAS PubMed Google Scholar
Frankenberg NT, Mason SA, Wadley GD, Murphy RM. Skeletal muscle cell-specific differences in type 2 diabetes. Cell Mol Life Sci. 2022;79(5):256.
Article CAS PubMed PubMed Central Google Scholar
Helge JW, Fraser AM, Kriketos AD, Jenkins AB, Calvert GD, Ayre KJ, et al. Interrelationships between muscle fibre type, substrate oxidation and body fat. Int J Obes. 1999;23(9):986–91. https://doi.org/10.1038/sj.ijo.0801030.
Kriketos AD, Pan DA, Lillioja S, Cooney GJ, Baur LA, Milner MR, et al. Interrelationships between muscle morphology, insulin action, and adiposity. Am J Physiol. 1996;270(6 Pt 2):R1332–9. https://doi.org/10.1152/ajpregu.1996.270.6.R1332.
Comments (0)