Utility of Bayesian Network Model for Prediction of Binary Outcome: An Exploratory Study of Mortality Prediction Amongst Squamous Cell Carcinomas of Oral Cavity

Warnakulasuriya S (2009) Global epidemiology of oral and oropharyngeal cancer. Oral Oncol 45(4–5):309–316

PubMed  Google Scholar 

Pillai J, Chincholkar T, Dixit R, Pandey M (2021) A systematic review of proteomic biomarkers in oral squamous cell cancer. World J Surg Oncol 28(19):315

Google Scholar 

Scutari M, Denis JB (2021) Bayesian networks: with examples in R. CRC press. https://doi.org/10.1201/9780429347436

Nikovski D (2000) Constructing Bayesian networks for medical diagnosis from incomplete and partially correct statistics. IEEE Trans Knowl Data Eng 12:509–516

Google Scholar 

Lucas PJF, van der Gaag LC, Abu-Hanna A (2004) Bayesian networks in biomedicine and health-care. Artif Intell Med 30(3):201–214

PubMed  Google Scholar 

Harrell FE, Lee KL, Mark DB (1996) Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat Med 15(4):361–387

PubMed  Google Scholar 

Ranganathan P, Pramesh CS, Aggarwal R (2017) Common pitfalls in statistical analysis: logistic regression. Perspect Clin Res 8(3):148–151

PubMed  PubMed Central  Google Scholar 

Heckerman D, Geiger D, Chickering DM (1995) Learning Bayesian networks: the combination of knowledge and statistical data. Mach Learn 20:197–243

Google Scholar 

Uusitalo L (2007) Advantages and challenges of Bayesian networks in environmental modelling. Ecol Model 203:312–318

Google Scholar 

Fuster-Parra P, García-Mas A, Ponseti FJ, Palou P, Cruz J (2014) A Bayesian network to discover relationships between negative features in sport: a case study of teen players. Qual Quant 48:1473–1491

Google Scholar 

Sesen MB, Nicholson AE, Banares-Alcantara R, Kadir T, Brady M (2013) Bayesian networks for clinical decision support in lung cancer care. PLoS ONE 8(12):e82349

PubMed  PubMed Central  Google Scholar 

Geum DH, Roh YC, Yoon SY, Kim HG, Lee JH, Song JM et al (2013) The impact factors on 5-year survival rate in patients operated with oral cancer. J Korean Assoc Oral Maxillofac Surg 39(5):207–216

PubMed  PubMed Central  Google Scholar 

De Silva RK, Siriwardena BSMS, Samaranayaka A, Abeyasinghe WAMUL, Tilakaratne WM (2018) A model to predict nodal metastasis in patients with oral squamous cell carcinoma. PLoS One 13(8):e0201755

PubMed  PubMed Central  Google Scholar 

Oliveira LL, Bergmann A, Melo AC, Thuler LCS (2020) Prognostic factors associated with overall survival in patients with oral cavity squamous cell carcinoma. Med Oral Patol Oral Cir Bucal 25(4):e523–e531

PubMed  PubMed Central  Google Scholar 

Lee SU, Moon SH, Choi SW, Cho KH, Park JY, Jung YS et al (2020) Prognostic significance of smoking and alcohol history in young age oral cavity cancer. Oral Dis 26(7):1440–1448

PubMed  Google Scholar 

Vrieze SI (2012) Model selection and psychological theory: a discussion of the differences between the Akaike information criterion (AIC) and the Bayesian information criterion (BIC). Psychol Methods 17(2):228–243

PubMed  PubMed Central  Google Scholar 

Hand DJ (1997) Construction and assessment of classification rules. Wiley, Chichester, New York, p 214

Google Scholar 

Marcot BG (2012) Metrics for evaluating performance and uncertainty of Bayesian network models. Ecol Model 10(230):50–62

Google Scholar 

IBM Corp (2010) IBM SPSS Statistics for Windows. Armonk, NY: IBM Corp

RStudio Team (2020) RStudio: Integrated Development for R [Internet]. RStudio, PBC, Boston, MA. Available from: http://www.rstudio.com/

Norsys Software Corp (2021) Netica Application. Vancouver, Canada: Norsys Software Corp

Kuhn M, Johnson K (2013) Applied predictive modeling [Internet]. 1st ed. New York, NY: Springer US, p 595. Available from: https://www.appliedpredictivemodeling.com. Accessed Dec 2020

Sarker IH (2021) Machine Learning: Algorithms, Real-World Applications and Research Directions. SN COMPUT SCI 2(3):160

PubMed  PubMed Central  Google Scholar 

Zanoni DK, Montero PH, Migliacci JC, Shah JP, Wong RJ, Ganly I et al (2019) Survival outcomes after treatment of cancer of the oral cavity (1985–2015). Oral Oncol 90:115–121

PubMed  PubMed Central  Google Scholar 

Russo D, Mariani P, Caponio VCA, Lo Russo L, Fiorillo L, Zhurakivska K et al (2021) Development and validation of prognostic models for oral squamous cell carcinoma: a systematic review and appraisal of the literature. Cancers 13(22):5755

PubMed  PubMed Central  Google Scholar 

Zhou J, Li H, Cheng B, Cao R, Zou F, Yang D, et al (2021) Derivation and validation of a prognostic scoring model based on clinical and pathological features for risk stratification in oral squamous cell carcinoma patients: a retrospective multicenter study. Front Oncol 11

Adeoye J, Tan JY, Choi SW, Thomson P (2021) Prediction models applying machine learning to oral cavity cancer outcomes: a systematic review. Int J Med Informatics 1(154):104557

Google Scholar 

Ganapathy S, Harichandrakumar KT, Penumadu P, Tamilarasu K, Nair NS (2022) Comparison of Bayesian, Frequentist and Machine learning models for predicting the two-year mortality of patients diagnosed with squamous cell carcinoma of the oral cavity. Clin Epidemiol Global Health 1(17):101145

Google Scholar 

Ducher M, Kalbacher E, Combarnous F, Finaz de Vilaine J, McGregor B, Fouque D et al (2013) Comparison of a Bayesian network with a logistic regression model to forecast IgA nephropathy. BioMed Res Int 2013:1–6

Google Scholar 

Padma R, Kalaivani A, Sundaresan S, Sathish P (2017) The relationship between histological differentiation and disease recurrence of primary oral squamous cell carcinoma. J Oral Maxillofac Pathol 21(3):461

PubMed  PubMed Central  Google Scholar 

Murthy V, Agarwal J, Laskar SG, Gupta T, Budrukkar A, Pai P et al (2010) Analysis of prognostic factors in 1180 patients with oral cavity primary cancer treated with definitive or adjuvant radiotherapy. J Can Res Ther 6(3):282–289

CAS  Google Scholar 

Witteveen A, Nane GF, Vliegen IMH, Siesling S, Ijzerman MJ (2018) Comparison of logistic regression and Bayesian networks for risk prediction of breast cancer recurrence. Med Decis Making 38(7):822–33

PubMed  Google Scholar 

Comments (0)

No login
gif