Neuroinflammation and neurodegeneration in Huntington’s disease: genetic hallmarks, role of metals and organophosphates

Ananbeh H, Vodicka P, Kupcova Skalnikova H (2021) Emerging roles of exosomes in Huntington’s disease. Int J Mol Sci 22(8):4085. https://doi.org/10.3390/ijms22084085

Article  PubMed  PubMed Central  CAS  Google Scholar 

Rai SN, Singh BK, Rathore AS, Zahra W, Keswani C, Birla H, Singh SS, Dilnashin H, Singh SP (2019) Quality control in Huntington’s disease: a therapeutic target. Neurotox Res 36:612–626. https://doi.org/10.1007/s12640-019-00087-xPMID: 31397710

Article  PubMed  CAS  Google Scholar 

Nance MA (1997) Clinical aspects of CAG repeat diseases. Brain Pathol 7(3):881–900. https://doi.org/10.1111/j.1750-3639.1997.tb00892.x

Article  PubMed  CAS  Google Scholar 

Chao TK, Hu J, Pringsheim T (2017) Risk factors for the onset and progression of Huntington disease. Neurotoxicology 61:79–99. https://doi.org/10.1016/j.neuro.2017.01.005

Article  PubMed  CAS  Google Scholar 

Sunwoo JS, Lee ST, Kim M (2010) A case of juvenile huntington disease in a 6-year-old boy. J Mov Disorders 3(2):45. https://doi.org/10.14802/jmd.10012

Article  Google Scholar 

Stanisławska-Sachadyn A, Krzemiński M, Zielonka D, Krygier M, Ziętkiewicz E, Sławek J, Limon J, REGISTRY investigators of the European Huntington’s Disease Network (EHDN) (2024) Sex contribution to average age at onset of Huntington’s disease depends on the number of (CAG) n repeats. Sci Rep 14(1):15729. https://doi.org/10.1038/s41598-024-64105-5

Article  PubMed  PubMed Central  CAS  Google Scholar 

Ferguson MW, Kennedy CJ, Palpagama TH, Waldvogel HJ, Faull RL, Kwakowsky A (2022) Current and possible future therapeutic options for Huntington’s disease. J Cent Nerv Syst Disease 14:11795735221092517. https://doi.org/10.1177/11795735221092517

Article  Google Scholar 

Maity S, Komal P, Kumar V, Saxena A, Tungekar A, Chandrasekar V (2022) Impact of ER stress and ER-mitochondrial crosstalk in Huntington’s disease. Int J Mol Sci 23(2):780. https://doi.org/10.3390/ijms23020780

Article  PubMed  PubMed Central  CAS  Google Scholar 

Pereira CM (2013) Crosstalk between endoplasmic reticulum stress and protein misfolding in neurodegenerative diseases. Int Sch Res Notices 2013(1):256404. https://doi.org/10.1155/2013/256404

Article  CAS  Google Scholar 

Alqahtani T, Deore SL, Kide AA, Shende BA, Sharma R, Chakole RD, Nemade LS, Kale NK, Borah S, Deokar SS, Behera A (2023) Mitochondrial dysfunction and oxidative stress in Alzheimer’s disease, and Parkinson’s disease, Huntington’s disease and amyotrophic lateral sclerosis-an updated review. Mitochondrion 71:83–92. https://doi.org/10.1016/j.mito.2023.05.007

Article  PubMed  CAS  Google Scholar 

Rehman MU, Sehar N, Dar NJ, Khan A, Arafah A, Rashid S, Rashid SM, Ganaie MA (2023) Mitochondrial dysfunctions, oxidative stress and neuroinflammation as therapeutic targets for neurodegenerative diseases: an update on current advances and impediments. Neurosci Biobehavioral Reviews 144:104961. https://doi.org/10.1016/j.neubiorev.2022.104961

Article  CAS  Google Scholar 

Stojanovic IR, Kostic M, Ljubisavljevic S (2014) The role of glutamate and its receptors in multiple sclerosis. J Neural Transm 121:945–955. https://doi.org/10.1007/s00702-014-1188-0

Article  PubMed  CAS  Google Scholar 

Verma M, Lizama BN, Chu CT (2022) Excitotoxicity, calcium and mitochondria: a triad in synaptic neurodegeneration. Translational Neurodegeneration 11(1):3. https://doi.org/10.1186/s40035-021-00278-7

Article  PubMed  PubMed Central  CAS  Google Scholar 

Lin TK, Cheng CH, Chen SD, Liou CW, Huang CR, Chuang YC (2012) Mitochondrial dysfunction and oxidative stress promote apoptotic cell death in the striatum via cytochrome c/caspase-3 signaling cascade following chronic rotenone intoxication in rats. Int J Mol Sci 13(7):8722–8739. https://doi.org/10.3390/ijms13078722

Article  PubMed  PubMed Central  CAS  Google Scholar 

Tschopp J, Schroder K (2010) NLRP3 inflammasome activation: the convergence of multiple signalling pathways on ROS production? Nat Rev Immunol 10(3):210–215. https://doi.org/10.1038/nri2725

Article  PubMed  CAS  Google Scholar 

Saroj P, Bansal Y, Singh R, Akhtar A, Sodhi RK, Bishnoi M, Sah SP, Kuhad A (2021) Neuroprotective effects of roflumilast against quinolinic acid-induced rat model of Huntington’s disease through inhibition of NF-κB mediated neuroinflammatory markers and activation of cAMP/CREB/BDNF signaling pathway. Inflammopharmacology 29:499–511. https://doi.org/10.1007/s10787-020-00787-3

Article  PubMed  CAS  Google Scholar 

Koch ET, Raymond LA (2019) Dysfunctional striatal dopamine signaling in Huntington’s disease. J Neurosci Res 97(12):1636–1654. https://doi.org/10.1002/jnr.24495

Article  PubMed  CAS  Google Scholar 

Tarnacka B, Jopowicz A, Maślińska M (2021) Copper, iron, and manganese toxicity in neuropsychiatric conditions. Int J Mol Sci 22(15):7820. https://doi.org/10.3390/ijms22157820

Article  PubMed  PubMed Central  CAS  Google Scholar 

Tizabi Y, Bennani S, El Kouhen N, Getachew B, Aschner M (2024) Heavy Metal Interactions with Neuroglia and Gut Microbiota: implications for Huntington’s Disease. Cells 13(13). https://doi.org/10.3390/cells13131144

Nittari G, Roy P, Martinelli I, Bellitto V, Tomassoni D, Traini E, Tayebati SK, Amenta F (2023) Rodent models of Huntington’s Disease: an overview. Biomedicines 11(12):3331. https://doi.org/10.3390/biomedicines11123331

Article  PubMed  PubMed Central  CAS  Google Scholar 

Dominah GA, McMinimy RA, Kallon S, Kwakye GF (2017) Acute exposure to chlorpyrifos caused NADPH oxidase mediated oxidative stress and neurotoxicity in a striatal cell model of Huntington’s disease. Neurotoxicology 60:54–69. https://doi.org/10.1016/j.neuro.2017.03.004

Article  PubMed  CAS  Google Scholar 

Wang M, Liu D, Yang S, Li Y, Lian X (2022) Smoking, alcohol consumption, and age at onset of Huntington’s disease: a mendelian randomization study. Parkinsonism Relat Disord 97:34–38. https://doi.org/10.1016/j.parkreldis.2022.02.013

Article  PubMed  Google Scholar 

Papanna B, Lazzari C, Rabottini M (2024) Huntington’s disease prevalence in Asia: a systematic review and meta-analysis. Rivista Di Psichiatria 59(1):4–12. https://doi.org/10.1708/4205.41943

Article  PubMed  Google Scholar 

Squitieri F, Maffi S, Al Harasi S, Al Salmi Q, D’Alessio B, Capelli G, Mazza T (2020) Incidence and prevalence of Huntington disease (HD) in the Sultanate of Oman: the first Middle East post-HTT service-based study. J Neurol Neurosurg Psychiatry 91(12):1359–1360. https://doi.org/10.1136/jnnp-2020-323241

Article  PubMed  Google Scholar 

Lee CY, Ro JS, Jung H, Kim M, Jeon B, Lee JY (2023) Increased 10-year prevalence of Huntington’s disease in South Korea: an analysis of medical expenditure through the national healthcare system. J Clin Neurol (Seoul Korea) 19(2):147. https://doi.org/10.3988/jcn.2022.0212

Article  Google Scholar 

Seliverstov Y, Dranitsyna M, Ivashynka A, Kravchenko M, Klyushnikov S, Illarioshkin S (2017) Huntington Disease in Russia: an epidemiological challenge?(P4. 323). Neurology 88(16supplement):P4–323. https://doi.org/10.1212/WNL.88.16_supplement.P4.323

Article  Google Scholar 

Hussain Z, Mukherjee A, Ganguly G, Joardar A, Roy S, Guin DS, Sinharoy U, Biswas A, Das SK (2020) Clinical profile of genetically proven Huntington’s disease patients from Eastern India. Ann Indian Acad Neurol 23(2):195–200. https://doi.org/10.4103/aian.AIAN_505_19

Article  PubMed  PubMed Central  Google Scholar 

Medina A, Mahjoub Y, Shaver L, Pringsheim T (2022) Prevalence and incidence of Huntington’s disease: an updated systematic review and meta-analysis. Mov Disord 37(12):2327–2335. https://doi.org/10.1002/mds.29228

Article  PubMed  PubMed Central  Google Scholar 

Tandon S, Aggarwal P, Sarkar S (2024 Mar) Polyglutamine disorders: Pathogenesis and potential drug interventions. Life Sci 14:122562. https://doi.org/10.1016/j.lfs.2024.122562

Saba J, Couselo FL, Bruno J, Carniglia L, Durand D, Lasaga M, Caruso C (2022) Neuroinflammation in Huntington’s disease: a starring role for astrocyte and microglia. Curr Neuropharmacol 20(6):1116. https://doi.org/10.2174/1570159X19666211201094608

Comments (0)

No login
gif