Ananbeh H, Vodicka P, Kupcova Skalnikova H (2021) Emerging roles of exosomes in Huntington’s disease. Int J Mol Sci 22(8):4085. https://doi.org/10.3390/ijms22084085
Article PubMed PubMed Central CAS Google Scholar
Rai SN, Singh BK, Rathore AS, Zahra W, Keswani C, Birla H, Singh SS, Dilnashin H, Singh SP (2019) Quality control in Huntington’s disease: a therapeutic target. Neurotox Res 36:612–626. https://doi.org/10.1007/s12640-019-00087-xPMID: 31397710
Article PubMed CAS Google Scholar
Nance MA (1997) Clinical aspects of CAG repeat diseases. Brain Pathol 7(3):881–900. https://doi.org/10.1111/j.1750-3639.1997.tb00892.x
Article PubMed CAS Google Scholar
Chao TK, Hu J, Pringsheim T (2017) Risk factors for the onset and progression of Huntington disease. Neurotoxicology 61:79–99. https://doi.org/10.1016/j.neuro.2017.01.005
Article PubMed CAS Google Scholar
Sunwoo JS, Lee ST, Kim M (2010) A case of juvenile huntington disease in a 6-year-old boy. J Mov Disorders 3(2):45. https://doi.org/10.14802/jmd.10012
Stanisławska-Sachadyn A, Krzemiński M, Zielonka D, Krygier M, Ziętkiewicz E, Sławek J, Limon J, REGISTRY investigators of the European Huntington’s Disease Network (EHDN) (2024) Sex contribution to average age at onset of Huntington’s disease depends on the number of (CAG) n repeats. Sci Rep 14(1):15729. https://doi.org/10.1038/s41598-024-64105-5
Article PubMed PubMed Central CAS Google Scholar
Ferguson MW, Kennedy CJ, Palpagama TH, Waldvogel HJ, Faull RL, Kwakowsky A (2022) Current and possible future therapeutic options for Huntington’s disease. J Cent Nerv Syst Disease 14:11795735221092517. https://doi.org/10.1177/11795735221092517
Maity S, Komal P, Kumar V, Saxena A, Tungekar A, Chandrasekar V (2022) Impact of ER stress and ER-mitochondrial crosstalk in Huntington’s disease. Int J Mol Sci 23(2):780. https://doi.org/10.3390/ijms23020780
Article PubMed PubMed Central CAS Google Scholar
Pereira CM (2013) Crosstalk between endoplasmic reticulum stress and protein misfolding in neurodegenerative diseases. Int Sch Res Notices 2013(1):256404. https://doi.org/10.1155/2013/256404
Alqahtani T, Deore SL, Kide AA, Shende BA, Sharma R, Chakole RD, Nemade LS, Kale NK, Borah S, Deokar SS, Behera A (2023) Mitochondrial dysfunction and oxidative stress in Alzheimer’s disease, and Parkinson’s disease, Huntington’s disease and amyotrophic lateral sclerosis-an updated review. Mitochondrion 71:83–92. https://doi.org/10.1016/j.mito.2023.05.007
Article PubMed CAS Google Scholar
Rehman MU, Sehar N, Dar NJ, Khan A, Arafah A, Rashid S, Rashid SM, Ganaie MA (2023) Mitochondrial dysfunctions, oxidative stress and neuroinflammation as therapeutic targets for neurodegenerative diseases: an update on current advances and impediments. Neurosci Biobehavioral Reviews 144:104961. https://doi.org/10.1016/j.neubiorev.2022.104961
Stojanovic IR, Kostic M, Ljubisavljevic S (2014) The role of glutamate and its receptors in multiple sclerosis. J Neural Transm 121:945–955. https://doi.org/10.1007/s00702-014-1188-0
Article PubMed CAS Google Scholar
Verma M, Lizama BN, Chu CT (2022) Excitotoxicity, calcium and mitochondria: a triad in synaptic neurodegeneration. Translational Neurodegeneration 11(1):3. https://doi.org/10.1186/s40035-021-00278-7
Article PubMed PubMed Central CAS Google Scholar
Lin TK, Cheng CH, Chen SD, Liou CW, Huang CR, Chuang YC (2012) Mitochondrial dysfunction and oxidative stress promote apoptotic cell death in the striatum via cytochrome c/caspase-3 signaling cascade following chronic rotenone intoxication in rats. Int J Mol Sci 13(7):8722–8739. https://doi.org/10.3390/ijms13078722
Article PubMed PubMed Central CAS Google Scholar
Tschopp J, Schroder K (2010) NLRP3 inflammasome activation: the convergence of multiple signalling pathways on ROS production? Nat Rev Immunol 10(3):210–215. https://doi.org/10.1038/nri2725
Article PubMed CAS Google Scholar
Saroj P, Bansal Y, Singh R, Akhtar A, Sodhi RK, Bishnoi M, Sah SP, Kuhad A (2021) Neuroprotective effects of roflumilast against quinolinic acid-induced rat model of Huntington’s disease through inhibition of NF-κB mediated neuroinflammatory markers and activation of cAMP/CREB/BDNF signaling pathway. Inflammopharmacology 29:499–511. https://doi.org/10.1007/s10787-020-00787-3
Article PubMed CAS Google Scholar
Koch ET, Raymond LA (2019) Dysfunctional striatal dopamine signaling in Huntington’s disease. J Neurosci Res 97(12):1636–1654. https://doi.org/10.1002/jnr.24495
Article PubMed CAS Google Scholar
Tarnacka B, Jopowicz A, Maślińska M (2021) Copper, iron, and manganese toxicity in neuropsychiatric conditions. Int J Mol Sci 22(15):7820. https://doi.org/10.3390/ijms22157820
Article PubMed PubMed Central CAS Google Scholar
Tizabi Y, Bennani S, El Kouhen N, Getachew B, Aschner M (2024) Heavy Metal Interactions with Neuroglia and Gut Microbiota: implications for Huntington’s Disease. Cells 13(13). https://doi.org/10.3390/cells13131144
Nittari G, Roy P, Martinelli I, Bellitto V, Tomassoni D, Traini E, Tayebati SK, Amenta F (2023) Rodent models of Huntington’s Disease: an overview. Biomedicines 11(12):3331. https://doi.org/10.3390/biomedicines11123331
Article PubMed PubMed Central CAS Google Scholar
Dominah GA, McMinimy RA, Kallon S, Kwakye GF (2017) Acute exposure to chlorpyrifos caused NADPH oxidase mediated oxidative stress and neurotoxicity in a striatal cell model of Huntington’s disease. Neurotoxicology 60:54–69. https://doi.org/10.1016/j.neuro.2017.03.004
Article PubMed CAS Google Scholar
Wang M, Liu D, Yang S, Li Y, Lian X (2022) Smoking, alcohol consumption, and age at onset of Huntington’s disease: a mendelian randomization study. Parkinsonism Relat Disord 97:34–38. https://doi.org/10.1016/j.parkreldis.2022.02.013
Papanna B, Lazzari C, Rabottini M (2024) Huntington’s disease prevalence in Asia: a systematic review and meta-analysis. Rivista Di Psichiatria 59(1):4–12. https://doi.org/10.1708/4205.41943
Squitieri F, Maffi S, Al Harasi S, Al Salmi Q, D’Alessio B, Capelli G, Mazza T (2020) Incidence and prevalence of Huntington disease (HD) in the Sultanate of Oman: the first Middle East post-HTT service-based study. J Neurol Neurosurg Psychiatry 91(12):1359–1360. https://doi.org/10.1136/jnnp-2020-323241
Lee CY, Ro JS, Jung H, Kim M, Jeon B, Lee JY (2023) Increased 10-year prevalence of Huntington’s disease in South Korea: an analysis of medical expenditure through the national healthcare system. J Clin Neurol (Seoul Korea) 19(2):147. https://doi.org/10.3988/jcn.2022.0212
Seliverstov Y, Dranitsyna M, Ivashynka A, Kravchenko M, Klyushnikov S, Illarioshkin S (2017) Huntington Disease in Russia: an epidemiological challenge?(P4. 323). Neurology 88(16supplement):P4–323. https://doi.org/10.1212/WNL.88.16_supplement.P4.323
Hussain Z, Mukherjee A, Ganguly G, Joardar A, Roy S, Guin DS, Sinharoy U, Biswas A, Das SK (2020) Clinical profile of genetically proven Huntington’s disease patients from Eastern India. Ann Indian Acad Neurol 23(2):195–200. https://doi.org/10.4103/aian.AIAN_505_19
Article PubMed PubMed Central Google Scholar
Medina A, Mahjoub Y, Shaver L, Pringsheim T (2022) Prevalence and incidence of Huntington’s disease: an updated systematic review and meta-analysis. Mov Disord 37(12):2327–2335. https://doi.org/10.1002/mds.29228
Article PubMed PubMed Central Google Scholar
Tandon S, Aggarwal P, Sarkar S (2024 Mar) Polyglutamine disorders: Pathogenesis and potential drug interventions. Life Sci 14:122562. https://doi.org/10.1016/j.lfs.2024.122562
Saba J, Couselo FL, Bruno J, Carniglia L, Durand D, Lasaga M, Caruso C (2022) Neuroinflammation in Huntington’s disease: a starring role for astrocyte and microglia. Curr Neuropharmacol 20(6):1116. https://doi.org/10.2174/1570159X19666211201094608
Comments (0)