El-Din SS, Rashed L, Medhat E, Aboulhoda BE, Badawy AD, ShamsEldeen AM et al (2020) Active form of vitamin D analogue mitigates neurodegenerative changes in Alzheimer’s disease in rats by targeting Keap1/Nrf2 and MAPK-38p/ERK signaling pathways. Steroids 156:108586
Villemagne VL, Burnham S, Bourgeat P, Brown B, Ellis KA, Salvado O et al (2013) Amyloid β deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer’s disease: a prospective cohort study. Lancet Neurol 12(4):357–367
Article CAS PubMed Google Scholar
Moezzi S-M-I, Mozafari N, Fazel-Hoseini S-M, Nadimi-Parashkoohi S, Abbasi H, Ashrafi H et al (2020) Apolipoprotein J in Alzheimer’s disease: shedding light on its role with cell signaling pathway perspective and possible therapeutic approaches. ACS Chem Neurosci 11(24):4060–4072
Article CAS PubMed Google Scholar
Association As (2017) 2017 Alzheimer’s disease facts and figures. Alzheimer’s Dement 13(4):325–373
Mullane K, Williams M (2019) Preclinical models of Alzheimer’s disease: relevance and translational validity. Curr Protocols Pharmacol 84(1):e57
Praticò D (2008) Oxidative stress hypothesis in Alzheimer’s disease: a reappraisal. Trends Pharmacol Sci 29(12):609–615
Perl DP (2010) Neuropathology of Alzheimer’s disease. Mt Sinai J Med 77(1):32–42
Article PubMed PubMed Central Google Scholar
Villeneuve S, Wirth M, La Joie R (2015) Are AD-typical regions the convergence point of multiple pathologies? Front Aging Neurosci 7:42
Article PubMed PubMed Central Google Scholar
De Luca P, Marra P, La Mantia I, Salzano FA, Camaioni A, Di Stadio A (2022) Entorhinal Cortex and Persistent Olfactory Loss in COVID-19 Patients: A Neuroanatomical Hypothesis. Comment on Fiorentino Correlations between Persistent Olfactory and Semantic Memory Disorders after SARS-CoV-2 Infection. Brain Sci. 2022, 12, 714. Brain Sciences.12(7):850
Karimani F, Asgari Taei A, Abolghasemi-Dehaghani M-R, Safari M-S, Dargahi L (2024) Impairment of entorhinal cortex network activity in Alzheimer’s disease. Front Aging Neurosci 16:1402573
Article PubMed PubMed Central Google Scholar
Somvanshi PR, Venkatesh KV (2014) A conceptual review on systems biology in health and diseases: from biological networks to modern therapeutics. Syst Synth Biol 8(1):99–116
Aguirre M, Spence JP, Sella G, Pritchard JK (2024) Gene regulatory network structure informs the distribution of perturbation effects. bioRxiv
Coleman DJL, Keane P, Luque-Martin R, Chin PS, Blair H, Ames L et al (2023) Gene regulatory network analysis predicts cooperating transcription factor regulons required for FLT3-ITD + AML growth. Cell Rep 42(12):113568
Article CAS PubMed PubMed Central Google Scholar
Dehghan Z, Mirmotalebisohi SA, Mozafar M, Sameni M, Saberi F, Derakhshanfar A et al (2024) Deciphering the similarities and disparities of molecular mechanisms behind respiratory epithelium response to HCoV-229E and SARS-CoV-2 and drug repurposing, a systems biology approach. DARU J Pharm Sci 32(1):215–235
Saberi F, Dehghan Z, Taheri Z, Pilehchi T, Zali H (2024) Deciphering Molecular mechanisms of Cutaneous Leishmaniasis, Pathogenesis and Drug Repurposing through systems Biology. Iran Biomed J 28(4):179
Article PubMed PubMed Central Google Scholar
Mirmotalebisohi SA, Dehghan Z, Alibakhshi A, Yarian F, Zali H (2023) Identification biomarkers and molecular mechanisms involved in lung transplant rejection, and drug repurposing: a systems biology study. J Adv Med Biomedical Res 31(149):525–535
Chen K, Rajewsky N (2007) The evolution of gene regulation by transcription factors and microRNAs. Nat Rev Genet 8(2):93–103
Article CAS PubMed Google Scholar
Martinez NJ, Walhout AJ (2009) The interplay between transcription factors and microRNAs in genome-scale regulatory networks. BioEssays 31(4):435–445
Article CAS PubMed PubMed Central Google Scholar
Urbina F, Puhl AC, Ekins S (2021) Recent advances in drug repurposing using machine learning. Curr Opin Chem Biol 65:74–84
Article CAS PubMed PubMed Central Google Scholar
Badkas A, De Landtsheer S, Sauter T (2022) Construction and contextualization approaches for protein-protein interaction networks. Comput Struct Biotechnol J 20:3280–3290
Article CAS PubMed PubMed Central Google Scholar
Chen C, Wang J, Pan D, Wang X, Xu Y, Yan J et al (2023) Applications of multi-omics analysis in human diseases. MedComm (2020).4(4):e315
Craig-Schapiro R, Fagan AM, Holtzman DM (2009) Biomarkers of Alzheimer’s disease. Neurobiol Dis 35(2):128–140
Article CAS PubMed Google Scholar
Wood LB, Winslow AR, Strasser SD (2015) Systems biology of neurodegenerative diseases. Integr Biol (Camb) 7(7):758–775
Article CAS PubMed Google Scholar
Onisiforou A, Christodoulou CC, Zamba-Papanicolaou E, Zanos P, Georgiou P (2024) Transcriptomic analysis reveals sex-specific patterns in the hippocampus in Alzheimer’s disease. Front Endocrinol 15:1345498
Irmady K, Hale CR, Qadri R, Fak J, Simelane S, Carroll T et al (2023) Blood transcriptomic signatures associated with molecular changes in the brain and clinical outcomes in Parkinson’s disease. Nat Commun 14(1):3956
Article CAS PubMed PubMed Central Google Scholar
Yuen SC, Zhu H, Leung S-w (2020) A systematic bioinformatics workflow with meta-analytics identified potential pathogenic factors of Alzheimer’s disease. Front NeuroSci 14:209
Article PubMed PubMed Central Google Scholar
Christodoulou CC, Onisiforou A, Zanos P, Papanicolaou EZ (2023) Unraveling the transcriptomic signatures of Parkinson’s disease and major depression using single-cell and bulk data. Front Aging Neurosci 15:1273855
Article CAS PubMed PubMed Central Google Scholar
Li J, Li L, Cai S, Song K, Hu S (2024) Identification of novel risk genes for Alzheimer’s disease by integrating genetics from hippocampus. Sci Rep 14(1):27484
Article CAS PubMed PubMed Central Google Scholar
Readhead B, Haure-Mirande J-V, Funk CC, Richards MA, Shannon P, Haroutunian V et al (2018) Multiscale analysis of independent Alzheimer’s cohorts finds disruption of molecular, genetic, and clinical networks by human herpesvirus. Neuron 99(1):64–82 e7
Article CAS PubMed PubMed Central Google Scholar
Berchtold NC, Coleman PD, Cribbs DH, Rogers J, Gillen DL, Cotman CW (2013) Synaptic genes are extensively downregulated across multiple brain regions in normal human aging and Alzheimer’s disease. Neurobiol Aging 34(6):1653–1661
Article CAS PubMed Google Scholar
Kim E-Y, Ashlock D, Yoon SH (2019) Identification of critical connectors in the directed reaction-centric graphs of microbial metabolic networks. BMC Bioinformatics 20:1–13
Yu H, Kim PM, Sprecher E, Trifonov V, Gerstein M (2007) The importance of bottlenecks in protein networks: correlation with gene essentiality and expression dynamics. PLoS Comput Biol 3(4):e59
Article PubMed PubMed Central Google Scholar
Bader GD, Hogue CW (2003) An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics 4:1–27
Latchman DS (1996) Inhibitory transcription factors. Int J Biochem Cell Biol 28(9):965–974
Article CAS PubMed Google Scholar
Wingender E, Dietze P, Karas H, Knüppel R (1996) TRANSFAC: a database on transcription factors and their DNA binding sites. Nucleic Acids Res 24(1):238–241
Comments (0)