How cryptic animal vectors of fungi can influence forest health in a changing climate and how to anticipate them

Agrios NG (2008) Transmission of plant diseases by insects. In: Capinera JL (ed) Encyclopedia of entomology. Springer, Netherlands, Dordrecht, pp 3853–3885. https://doi.org/10.1007/978-1-4020-6359-6_2512

Chapter  Google Scholar 

Alfonzo A, Francesca N, Sannino C, Settanni L, Moschetti G (2013) Filamentous fungi transported by birds during migration across the Mediterranean sea. Curr Microbiol 66:236–242. https://doi.org/10.1007/s00284-012-0262-9

Article  PubMed  CAS  Google Scholar 

Altizer S, Bartel R, Han BA (2011) Animal migration and infectious disease risk. Science 331:296–302. https://doi.org/10.1126/science.1194694

Article  PubMed  CAS  Google Scholar 

Baker RE, Mahmud AS, Miller IF, Rajeev M, Rasambainarivo F, Rice BL, Takahashi S, Tatem AJ, Wagner CE, Wang L-F, Wesolowski A, Metcalf CJE (2022) Infectious disease in an era of global change. Nat Rev Microbiol 20:193–205. https://doi.org/10.1038/s41579-021-00639-z

Article  PubMed  CAS  Google Scholar 

Baştanlar Y, Özuysal M (2014) Introduction to machine learning. In: Yousef M, Allmer J (eds) miRNomics: microRNA biology and computational analysis. Humana Press, Totowa, NJ, pp 105–128

Chapter  Google Scholar 

Bell KL, Campos M, Hoffmann BD, Encinas-Viso F, Hunter GC, Webber BL (2024) Environmental DNA methods for biosecurity and invasion biology in terrestrial ecosystems: progress, pitfalls, and prospects. Sci Total Environ 926:171810. https://doi.org/10.1016/j.scitotenv.2024.171810

Article  PubMed  CAS  Google Scholar 

Bertoia A, Murray T, Robertson BC, Monks JM (2023) Pitfall trapping outperforms other methods for surveying ground-dwelling large-bodied alpine invertebrates. J Insect Conserv 27:679–692. https://doi.org/10.1007/s10841-023-00498-4

Article  Google Scholar 

Bickford D, Lohman DJ, Sodhi NS, Ng PKL, Meier R, Winker K, Ingram KK, Das I (2007) Cryptic species as a window on diversity and conservation. Trends Ecol Evol 22:148–155. https://doi.org/10.1016/j.tree.2006.11.004

Article  PubMed  Google Scholar 

Bielčik M, Aguilar-Trigueros CA, Lakovic M, Jeltsch F, Rillig MC (2019) The role of active movement in fungal ecology and community assembly. Mov Ecol 7:36. https://doi.org/10.1186/s40462-019-0180-6

Article  PubMed  PubMed Central  Google Scholar 

Bracalini M, Florenzano GT, Panzavolta T (2024) Verbenone affects the behavior of insect predators and other saproxylic beetles differently: trials using pheromone-baited bark beetle traps. Insects 15:260. https://doi.org/10.3390/insects15040260

Article  PubMed  PubMed Central  Google Scholar 

Bradshaw AJ, Autumn KC, Rickart EA, Dentinger BTM (2022) On the origin of feces: fungal diversity, distribution, and conservation implications from feces of small mammals. Environ DNA 4:608–626. https://doi.org/10.1002/edn3.281

Article  Google Scholar 

Burdon JJ, Zhan J (2020) Climate change and disease in plant communities. PLOS Biol 18:e3000949. https://doi.org/10.1371/journal.pbio.3000949

Article  PubMed  PubMed Central  CAS  Google Scholar 

Calhim S, Halme P, Petersen JH, Læssøe T, Bässler C, Heilmann-Clausen J (2018) Fungal spore diversity reflects substrate-specific deposition challenges. Sci Rep 8:5356. https://doi.org/10.1038/s41598-018-23292-8

Article  PubMed  PubMed Central  CAS  Google Scholar 

Card SD, Pearson MN, Clover GRG (2007) Plant pathogens transmitted by pollen. Australas Plant Pathol 36:455–461. https://doi.org/10.1071/AP07050

Article  Google Scholar 

Chaudhary VB, Aguilar-Trigueros CA, Mansour I, Rillig MC (2022) Fungal dispersal across spatial scales. Annu Rev Ecol Evol Syst 53:69–85. https://doi.org/10.1146/annurev-ecolsys-012622-021604

Article  Google Scholar 

Chen F, Jiang F, Ma J, Alghamdi MA, Zhu Y, Yong JWH (2024) Intersecting planetary health: exploring the impacts of environmental stressors on wildlife and human health. Ecotoxicol Environ Saf 283:116848. https://doi.org/10.1016/j.ecoenv.2024.116848

Article  PubMed  CAS  Google Scholar 

Chiu C-I, Ou J-H, Kuan K-C, Chen C-Y, Huang Y-T, Sripontan Y, Li H-F (2023) Body size of fungus-growing termites infers on the volume and density of their fungal cultivar. R Soc Open Sci 10:230126. https://doi.org/10.1098/rsos.230126

Article  PubMed  PubMed Central  CAS  Google Scholar 

Cohen SP, Leach JE (2020) High temperature-induced plant disease susceptibility: more than the sum of its parts. Curr Opin Plant Biol Biotic Interactions AGRI 2019(56):235–241. https://doi.org/10.1016/j.pbi.2020.02.008

Article  CAS  Google Scholar 

Conover D, Paris T, Martini X (2024) Ecological dynamics of ambrosia beetle species in laurel wilt infected trees. Biol Invasions 26:583–590. https://doi.org/10.1007/s10530-023-03194-1

Article  Google Scholar 

Cook CN, Hockings M (2011) Opportunities for improving the rigor of management effectiveness evaluations in protected areas. Conserv Lett 4:372–382. https://doi.org/10.1111/j.1755-263X.2011.00189.x

Article  Google Scholar 

Corkley I, Fraaije B, Hawkins N (2022) Fungicide resistance management: maximizing the effective life of plant protection products. Plant Pathol 71:150–169. https://doi.org/10.1111/ppa.13467

Article  Google Scholar 

Crocker E, Condon B, Almsaeed A, Jarret B, Nelson CD, Abbott AG, Main D, Staton M (2020) TreeSnap: a citizen science app connecting tree enthusiasts and forest scientists. Plants People Planet 2:47–52. https://doi.org/10.1002/ppp3.41

Article  Google Scholar 

da Silva LP, Pereira Coutinho A, Heleno RH, Tenreiro PQ, Ramos JA (2016) Dispersal of fungi spores by non-specialized flower-visiting birds. J Avian Biol 47:438–442. https://doi.org/10.1111/jav.00806

Article  Google Scholar 

Diehl JMC, Kowallik V, Keller A, Biedermann PHW (2022) First experimental evidence for active farming in ambrosia beetles and strong heredity of garden microbiomes. Proc R Soc B Biol Sci 289:20221458. https://doi.org/10.1098/rspb.2022.1458

Article  CAS  Google Scholar 

Duncan S, Carey A (2004) Squirrels cannot live by truffles alone: a closer look at a northwest keystone complex. Science Findings 60. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station. 5 p

Eberl F, Fernandez de Bobadilla M, Reichelt M, Hammerbacher A, Gershenzon J, Unsicker SB (2020) Herbivory meets fungivory: insect herbivores feed on plant pathogenic fungi for their own benefit. Ecol Lett 23:1073–1084. https://doi.org/10.1111/ele.13506

Article  PubMed  Google Scholar 

Edwards CA, Arancon NQ (2022) Earthworms as pests and benefactors. In: Edwards CA, Arancon NQ (eds) Biology and ecology of earthworms. Springer, US, New York, NY, pp 335–370

Chapter  Google Scholar 

Elith J, Kearney M, Phillips S (2010) The art of modelling range-shifting species. Methods Ecol Evol 1:330–342. https://doi.org/10.1111/j.2041-210x.2010.00036.x

Article  Google Scholar 

Elkhateeb W (2021) Fungi and insects as models of extraordinary symbiosis. Stud Fungi 6:469–479. https://doi.org/10.5943/sif/6/1/36

Article  Google Scholar 

Elliott T (2019) Reptilian mycophagy: a global review of mutually beneficial associations between reptiles and macrofungi. Mycosphere 10:776–797. https://doi.org/10.5943/mycosphere/10/1/18

Article  Google Scholar 

Elliott TF, Jusino MA, Trappe JM, Lepp H, Ballard G-A, Bruhl JJ, Vernes K (2019) A global review of the ecological significance of symbiotic associations between birds and fungi. Fungal Divers 98:161–194. https://doi.org/10.1007/s13225-019-00436-3

Article  Google Scholar 

Elliott TF, Elliott K, Vernes K (2022a) The fungal rat race: mycophagy among rodent communities in eastern Australia. Wildl Res 50:526–536. https://doi.org/10.1071/WR22062

Article  CAS  Google Scholar 

Elliott TF, Truong C, Jackson SM, Zúñiga CL, Trappe JM, Vernes K (2022b) Mammalian mycophagy: a global review of ecosystem interactions between mammals and fungi. Fungal Syst Evol 9:99–159. https://doi.org/10.3114/fuse.2022.09.07

Article  PubMed  PubMed Central  CAS  Google Scholar 

EPPO (2024) Bretziella fagacearum - EPPO Global Database. https://gd.eppo.int.

FAO (2018) International Standard for Phytosanitary Measures (ISPM)—6 Surveillance.

Fick SE, Hijmans RJ (2017) WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int J Climatol 37:4302–4315. https://doi.org/10.1002/joc.5086

Article 

Comments (0)

No login
gif