An update on thermostable keratinases for protein engineering against feather pollutants

Abdelmoteleb A, Gonzalez-Mendoza D, Tzintzun-Camacho O, Grimaldo-Juárez O, Mendez-Trujillo V, Moreno-Cruz C, Ceceña-Duran C, Roumia AF (2023) Keratinases from Streptomyces netropsis and Bacillus subtilis and their potential use in the chicken feather degrading. Fermentation 9:1–15. https://doi.org/10.3390/fermentation9020096

Article  CAS  Google Scholar 

Aehle W, Bott R, Graycar T (2009) Proteolytic cleavage, reaction mechanisms. Encycl Ind Biotechnol 1–10. https://doi.org/10.1002/9780470054581.EIB518

Akram F, Haq I ul, Jabbar Z (2020) Production and characterization of a novel thermo- and detergent stable keratinase from Bacillus sp. NKSP-7 with perceptible applications in leather processing and laundry industries. Int J Biol Macromol 164:371–383. https://doi.org/10.1016/J.IJBIOMAC.2020.07.146

Akram F, Haq I ul, Hayat AK, Ahmed Z, Jabbar Z, Baig IM, Akram R (2021) Keratinolytic enzyme from a thermotolerant isolate Bacillus sp. NDS-10: an efficient green biocatalyst for poultry waste management, laundry and hide-dehairing applications. Waste Biomass Valorization 12:5001–5018. https://doi.org/10.1007/s12649-021-01369-2

Alamoudi SA, Khalel AF, Alghamdi MA, Alshehri WA, Alsubeihi GK, Alsolmy SA, Hakeem MA (2022) Isolation, identification and characterization of keratin-degrading Streptomyces rochei AM8. J Pure Appl Microbiol 16:2045–2054. https://doi.org/10.22207/JPAM.16.3.5

Article  Google Scholar 

Alibardi L (2016) The process of cornification evolved from the initial keratinization in the epidermis and epidermal derivatives of vertebrates: a new synthesis and the case of sauropsids. Int Rev Cell Mol Biol 327:263–319. https://doi.org/10.1016/BS.IRCMB.2016.06.005

Article  CAS  PubMed  Google Scholar 

Avdiyuk KV, Ivanytsia VA, Varbanets LD (2021) Screening of enzyme producers with keratinase activity among marine actinobacteria. Mikrobiol Zh 83:12–19. https://doi.org/10.15407/MICROBIOLJ83.02.012

Article  Google Scholar 

Bhari R, Kaur M (2021) Sarup Singh R (2021) Chicken feather waste hydrolysate as a superior biofertilizer in agroindustry. Curr Microbiol 786(78):2212–2230. https://doi.org/10.1007/S00284-021-02491-Z

Article  Google Scholar 

Bhari R, Kaur M, Singh RS (2019) Thermostable and halotolerant keratinase from Bacillus aerius NSMk2 with remarkable dehairing and laundary applications. J Basic Microbiol 59:555–568. https://doi.org/10.1002/JOBM.201900001

Article  CAS  PubMed  Google Scholar 

Bhari R, Kaur M (2023) Fungal keratinases: enzymes with immense biotechnological potential. Fungal Resour Sustain Econ 89–125. https://doi.org/10.1007/978-981-19-9103-5_4

Blahut M, Sanchez E, Fisher CE, Outten FW (2020) Fe-S cluster biogenesis by the bacterial Suf pathway. Biochim Biophys Acta - Mol Cell Res 1867:118829. https://doi.org/10.1016/J.BBAMCR.2020.118829

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bohacz J, Korniłłowicz-Kowalska T, Kitowski I, Ciesielska A (2020) Degradation of chicken feathers by Aphanoascus keratinophilus and Chrysosporium tropicum strains from pellets of predatory birds and its practical aspect. Int Biodeterior Biodegradation 151:104968. https://doi.org/10.1016/J.IBIOD.2020.104968

Article  CAS  Google Scholar 

Bouacem K, Bouanane-Darenfed A, Zaraî Jaouadi N, Joseph M, Hacene H, Ollivier B, Fardeau ML, Bejar S, Jaouadi B (2016) Novel serine keratinase from Caldicoprobacter algeriensis exhibiting outstanding hide dehairing abilities. Int J Biol Macromol 86:321–328. https://doi.org/10.1016/j.ijbiomac.2016.01.074

Article  CAS  PubMed  Google Scholar 

Brandelli A, Sala L, Kalil SJ (2015) Microbial enzymes for bioconversion of poultry waste into added-value products. Food Res Int 73:3–12. https://doi.org/10.1016/J.FOODRES.2015.01.015

Article  CAS  Google Scholar 

Cai CG, Chen JS, Qi JJ, Yin Y, Zheng XD (2013) Streptomces aureofaciens for producing keratinase and application method thereof. J Zhejiang Univ Sci B 9:713–720. https://doi.org/10.1631/JZUS.B0820128

Article  Google Scholar 

Cavello I, Urbieta MS, Cavalitto S, Donati E (2020) Bacillus cytotoxicus isolated from a pristine natural geothermal area reveals high keratinolytic activity. Microorg 8:796. https://doi.org/10.3390/MICROORGANISMS8060796

Article  CAS  Google Scholar 

Chaudhary L, Siddiqui MH, Vimal A, Bhargava P (2021) Biological degradation of keratin by microbial keratinase for effective waste management and potent industrial applications. Curr Protein Pept Sci 22:304–312. https://doi.org/10.2174/1389203722666210215151952

Article  CAS  Google Scholar 

Chen J, Yang S, Liang S, Lu F, Long K, Zhang X (2020) In vitro synergistic effects of three enzymes from Bacillus subtilis CH-1 on keratin decomposition. 3 Biotech 10:1–7. https://doi.org/10.1007/S13205-020-2143-4/METRICS

Article  Google Scholar 

Cheong CW, Lee YS, Ahmad SA, Ooi PT, Phang LY (2018) Chicken feather valorization by thermal alkaline pretreatment followed by enzymatic hydrolysis for protein-rich hydrolysate production. Waste Manag 79:658–666. https://doi.org/10.1016/J.WASMAN.2018.08.029

Article  CAS  PubMed  Google Scholar 

Daniel RM, Dines M, Petach HH (1996) The denaturation and degradation of stable enzymes at high temperatures. Biochem J 317:1–11. https://doi.org/10.1042/BJ3170001

Article  CAS  PubMed  PubMed Central  Google Scholar 

de Menezes CLA, do Santos RC, Santos MV, Boscolo M, da Silva R, Gomes E, da Silva RR (2021) Industrial sustainability of microbial keratinases: production and potential applications. World J Microbiol Biotechnol 37:1–17. https://doi.org/10.1007/S11274-021-03052-Z/METRICS

Article  Google Scholar 

Derhab N, El-Metwally MM, Mabrouk MEM, Mohammed YMM (2022) Feather degrading fungi: isolation, identification and measuring the proteolytic activity using solid-state fermentaion technique. J Agric Environ Sci 21:1–18. https://doi.org/10.21608/JAESJ.2022.148328.1007

Article  Google Scholar 

Derhab N, Mabrouk MEM, El-Metwally MM, Mohammed YMM (2023) Thermostable keratinase from Bacillus cereus L10: optimization and some potential biotechnological applications. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-023-04887-2

Article  Google Scholar 

Dhanasingh I, Sung JY, La JW, Kang E, Lee DW, Lee SH (2021) Structure of oxidized pyrrolidone carboxypeptidase from Fervidobacterium islandicum AW-1 reveals unique structural features for thermostability and keratinolysis. Biochem Biophys Res Commun 540:101–107. https://doi.org/10.1016/J.BBRC.2020.12.056

Article  CAS  PubMed  Google Scholar 

Dipankar P, Bhan C (2019) Role of keratinase in bioremediation of feathers and hairs. Smart Bioremediation Technol Microb Enzym 83–98. https://doi.org/10.1016/B978-0-12-818307-6.00005-6

do Reis SV, Beys-da-Silva WO, Tirloni L, Santi L, Seixas A, Termignoni C, Silva MVD, Macedo AJ (2020) The extremophile Anoxybacillus sp PC2 isolated from Brazilian semiarid region (Caatinga) produces a thermostable keratinase. J Basic Microbiol 60:809–815. https://doi.org/10.1002/JOBM.202000186

Article  CAS  PubMed  PubMed Central  Google Scholar 

Edelhoch H (1960) The denaturation of pepsin IV. The effects of temperature. Biochim Biophys Acta 38:113–122. https://doi.org/10.1016/0006-3002(60)91200-2

Article  CAS  PubMed  Google Scholar 

Esmail SS, Hassan AA, Easa SM, Ismail A-MS (2024) Production and partial purification of an innovative heat resistant α-keratinase with some remarkable medical and industrial applications. Egypt Pharm J. https://doi.org/10.4103/EPJ.EPJ_56_24

Article  Google Scholar 

Fang Z, Zhang J, Liu B, Du G, Chen J (2016) Enhancement of the catalytic efficiency and thermostability of Stenotrophomonas sp. keratinase KerSMD by domain exchange with KerSMF. Microb Biotechnol 9:35–46. https://doi.org/10.1111/1751-7915.12300

Article  CAS  PubMed  Google Scholar 

Feroz S, Muhammad N, Ranayake J, Dias G (2020) Keratin-based materials for biomedical applications. Bioact Mater 5:496–509. https://doi.org/10.1016/J.BIOACTMAT.2020.04.007

Article  PubMed  PubMed Central  Google Scholar 

Friedricht AB, Antranikian G (1996) Keratin degradation by Feividobacterium pennavorans, a novel thermophilic anaerobic species of the order Thermotogales. Appl Environ Microbiol 62:2875–2882. https://doi.org/10.1128/aem.62.8.2875-2882.1996

Article  Google Scholar 

Gahatraj I, Borah A, Pandey P, Bhattacharya A, Mazumdar S, Singh B, Kumar S (2023) Current progress and biotechnological applications of microbial keratinases. J Pure Appl Microbiol 17:732–748. https://doi.org/10.22207/JPAM.17.2.50

Article  Google Scholar 

Ghasemi Y, Shahbazi M, Rasoul-amini S, Kargar M (2012) Identification and characterization of feather-degrading bacteria from keratin-rich wastes. 737–744. https://doi.org/10.1007/s13213-011-0313-7

González V, Vargas-Straube MJ, Beys-Da-Silva WO, Santi L, Valencia P, Beltrametti F, Cámara B (2020) Enzyme bioprospection of marine-derived actinobacteria from the Chilean coast and new insight in the mechanism of keratin degradation in Streptomyces sp. G11C. Mar Drugs 18:1–26. https://doi.org/10.3390/MD18110537

Article  Google Scholar 

Greenwold MJ, Bao W, Jarvis ED, Hu H, Li C, Gilbert MTP, Zhang G (2014) Sawyer RH (2014) Dynamic evolution of the alpha (α) and beta (β) keratins has accompanied integument diversification and the adaptation of birds into novel lifestyles. BMC Evol Biol 141(14):1–16. https://doi.org/10.1186/S12862-014-0249-1

Article  Google Scholar 

Gurav RG, Jadhav JP (2013) Biodegradation of keratinous waste by Chryseobacterium sp. RBT isolated from soil contaminated with poultry waste. J Basic Microbiol 53:128–135.

Comments (0)

No login
gif