Development of self-report measures of physical, mental, and emotional fatigability: the michigan fatigability index (MIFI)

Lerdal, A., et al. (2005). Fatigue in the general population: A translation and test of the psychometric properties of the Norwegian version of the fatigue severity scale. Scand Joornal Public Health, 33(2), 123–130.

Article  Google Scholar 

Hadjimichael, O., et al. (2008). Fatigue characteristics in multiple sclerosis: The north american research committee on multiple sclerosis (NARCOMS) survey. Health Quality Life Outcomes, 6, 100.

Article  Google Scholar 

Braley, T. J., & Chervin, R. D. (2010). Fatigue in multiple sclerosis: Mechanisms, evaluation, and treatment. Sleep, 33(8), 1061–1067.

Article  PubMed  PubMed Central  Google Scholar 

Walitt, B., et al. (2015). The prevalence and characteristics of fibromyalgia in the 2012 national health interview survey. PLoS ONE, 10(9), e0138024.

Article  PubMed  PubMed Central  Google Scholar 

Hauser, W., et al. (2012). Validation of the fibromyalgia survey questionnaire within a cross-sectional survey. PLoS ONE, 7(5), e37504.

Article  PubMed  PubMed Central  Google Scholar 

Krupp, L. B., et al. (1989). The fac4tigue severity scale. Application to patients with multiple sclerosis and systemic lupus erythematosus. Archives Neurol., 46(10), 1121–1123.

Article  CAS  Google Scholar 

Fisk, J. D., et al. (1994). The impact of fatigue on patients with multiple sclerosis. Canadian Journal of Neurological Sciences, 21(1), 9–14.

Article  CAS  Google Scholar 

Tyson, S. F., & Brown, P. (2014). How to measure fatigue in neurological conditions? A systematic review of psychometric properties and clinical utility of measures used so far. Clinical Rehabilitation, 28(8), 804–816.

Article  PubMed  Google Scholar 

Machado, M. O., et al. (2021). Measuring fatigue: A meta-review. International Journal of Dermatology, 60(9), 1053–1069.

Article  PubMed  Google Scholar 

Kratz, A. L., et al. (2016). The PROMIS fatiguefm profile: A self-report measure of fatigue for use in fibromyalgia. Quality of Life Research, 25(7), 1803–1813.

Article  PubMed  PubMed Central  Google Scholar 

Eldadah, B. A. (2010). Fatigue and fatigability in older adults. PM & R, 2(5), 406–413.

Article  Google Scholar 

Enoka, R. M. (1995). Mechanisms of muscle fatigue: Central factors and task dependency. Journal of Electromyography and Kinesiology, 5(3), 141–149.

Article  CAS  PubMed  Google Scholar 

Stokes, M. J., Cooper, R. G., & Edwards, R. H. (1988). Normal muscle strength and fatigability in patients with effort syndromes. BMJ, 297(6655), 1014–1017.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kluger, B. M., Krupp, L. B., & Enoka, R. M. (2013). Fatigue and fatigability in neurologic illnesses: Proposal for a unified taxonomy. Neurology, 80(4), 409–416.

Article  PubMed  PubMed Central  Google Scholar 

Enoka, R. M., et al. (2021). Distinguishing between fatigue and fatigability in multiple sclerosis. Neurorehabilitation and Neural Repair, 35(11), 960–973.

Article  PubMed  Google Scholar 

Glynn, N. W., et al. (2021). Perceived physical fatigability predicts all-cause mortality in older adults. Journal Gerontology A Biology Science Medicine Science. https://doi.org/10.1093/gerona/glab374

Article  Google Scholar 

Moored, K. D., et al. (2021). Life-space mobility in older men: The role of perceived physical and mental fatigability. Journal Gerontology A Biology Science Medicine Science, 77, 2329–2335.

Article  Google Scholar 

Glynn, N. W., et al. (2015). The pittsburgh fatigability scale for older adults: Development and validation. Journal of the American Geriatrics Society, 63(1), 130–135.

Article  PubMed  Google Scholar 

Yang, C. M., & Wu, C. H. (2005). The situational fatigue scale: A different approach to measuring fatigue. Quality of Life Research, 14(5), 1357–1362.

Article  PubMed  Google Scholar 

Kratz, A. L., et al. (2019). Development of a person-centered conceptual model of perceived fatigability. Quality of Life Research, 28(5), 1337–1347.

Article  PubMed  PubMed Central  Google Scholar 

PROMIS. Patient reported outcomes measurement information system (PROMIS) instrument development and validation scientific standards, Version 2.0. 2013 [cited 2022 January 25]; Available from: https://staging.healthmeasures.net/images/PROMIS/PROMISStandards_Vers2.0_Final.pdf.

Cella, D., et al. (2011). The neurology quality-of-life measurement initiative. Archives of Physical Medicine and Rehabilitation, 92(10 Suppl), S28-36.

Article  PubMed  PubMed Central  Google Scholar 

Willis, G.B., Cognitive interviewing: A tool for improving questionnaire design. 2005, Thousand Oaks, CA: Sage Publications

Bonomi, A. E., et al. (1996). Multilingual translation of the functional assessment of cancer therapy (FACT) quality of life measurement system. Quality of Life Research, 5(3), 309–320.

Article  CAS  PubMed  Google Scholar 

Qualtrics. Qualtrics security white paper: Why should i trust qualtrics with my sensitive data? [pdf]. 2011 July 3, 2014]; Version 1.0:

Wolfe, F., et al. (2011). Fibromyalgia criteria and severity scales for clinical and epidemiological studies: A modification of the ACR Preliminary diagnostic criteria for fibromyalgia. Journal of Rheumatology, 38(6), 1113–1122.

Article  PubMed  Google Scholar 

Brummett, C. M., et al. (2011). The michigan body map and its use in assessing the american college of rheumatology survey criteria for fibromyalgia. Arthritis and Rheumatism, 62(10 supplement), S744.

Google Scholar 

Wolfe, F., et al. (2016). 2016 revisions to the 2010/2011 fibromyalgia diagnostic criteria. Seminars in Arthritis and Rheumatism, 46(3), 319–329.

Article  PubMed  Google Scholar 

Samejima, F. (1969). Estimation of latent ability using a response pattern of graded scores. Psychometrika. https://doi.org/10.1007/BF03372160

Article  Google Scholar 

Samejima, F., W.J. van der Liden, and R. Hambleton, The graded response model., in Handbook of modern item response theory, W.J. van der Liden, Editor. 1996, Springer: NY, NY. p. 85–100.

Bryant, F. B., & Yarnold, P. R. (1995). Principal components analysis and exploratory and confirmatory factor analysis. In L. G. Grimm & R. R. Yarnold (Eds.), Reading and understanding multivariate statistics (pp. 99–136). American Psychological Association.

Google Scholar 

Everitt, B.S., Multivariate analysis: The need for data, and other problems. British Journal of Psychiatry, 1975. 126: p. 2S7–240.

Gorsuch, R. L., & Analysis, F. (1983). Hillsdale. Lawrence Erlbaum Associates.

Google Scholar 

Clauser, B. E., & Hambleton, R. K. (1994). Review of differential item functioning. Journal of Educational Measurement, 31(1), 88–92.

Google Scholar 

Choi, S. W., Cook, K. F., & Dodd, B. G. (1997). Parameter recovery for the partial credit model using MULTILOG. Journal of Outcome Measurement, 1(2), 114–142.

CAS  PubMed  Google Scholar 

Linacre, J. M. (1999). Investigating rating scale category utility. Journal of Outcome Measurement, 3(2), 103–122.

CAS  PubMed  Google Scholar 

Linacre, J. M. (2002). Optimizing rating scale category effectiveness. Journal of Applied Measurement, 3(1), 85–106.

PubMed  Google Scholar 

Edelen, M. O., & Reeve, B. B. (2007). Applying item response theory (IRT) modeling to questionnaire development, evaluation, and refinement. Quality of Life Research, 16(Suppl 1), 5–18.

Article  PubMed  Google Scholar 

Hays, R.D., L.S. Morales, and S.P. Reise, Item response theory and health outcomes measurement in the 21st century. Med Care, 2000. 38(9 Suppl): II28–42.

Reise, S. P., & Haviland, M. G. (2005). Item response theory and the measurement of clinical change. Journal of Personality Assessment, 84(3), 228–238.

Article  PubMed  Google Scholar 

Muthen, L.K. and B.O. Muthen, MPlus User's Guide. 8th ed. 1998–2017, Los Angeles, CA: Muthen & Muthen.

Hu, L.-T., & Bentler, P. M. (1999). Cut-off criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 6, 1–55.

Article  Google Scholar 

Kline, R.B., Principles and practice of structural equation modeling. 1998, New York, NY: Guiliford Press

Lai, J. S., Crane, P. K., & Cella, D. (2006). Factor analysis techniques for assessing sufficient unidimensionality of cancer related fatigue. Quality of Life Research, 15(7), 1179–1190.

Article  PubMed  Google Scholar 

Lai, J. S., et al. (2011). Parent-perceived child cognitive function: Results from a sample drawn from the US general population. Childs Nervous System, 27(2), 285–293.

Article 

Comments (0)

No login
gif