Bottcher I, Zoglauer K, Goring H (1988) Induction and reversion of vitrification of plants cultured in vitro. Physiol Plant 72:560–564
Chaneva G, Tomov A, Paunov M, Hristova V, Ganeva V, Mihaylova N, Anev S, Krumov N, Yordanova Z, Tsenov B, Vassileva V, Bonchev G, Zhiponova M (2022) Jewel orchid’s biology and physiological response to aquaponic water as a potential fertilizer. Plants 11:3181. https://doi.org/10.3390/plants11223181
Article CAS PubMed PubMed Central Google Scholar
Chen Y, Huang J, Yeap ZQ, Zhang X, Wu S, Ng CH, Yam MF (2018) Rapid authentication and identification of different types of A. roxburghii by Tri-step FT-IR spectroscopy. Spectrochim Acta Part A 199:271–282. https://doi.org/10.1016/j.saa.2018.03.06
Chen Y, Tan CS, Ng CH, Yam MF, Wu S, Sun Z (2021) Development of a HPTLC method with iterative calibration approach for quantitative evaluation of Kinsenoside content in different types of Anoectochilus roxburghii. Microchem J 165:106076. https://doi.org/10.1016/j.microc.2021.106076
Cuello JL, Walker PN, Heuser CW, Heinemann PH (1991) Controlled in vitro environment for stage II micropropagation of Buddleia alternifolia (Butterfly Bush). Trans ASAE 34:1912–1918
Dan Y, Yu X, Guo SX, Meng Z (2012) Effects of forty-two strains of orchid mycorrhizal fungi on growth of plantlets of Anoectochilus roxburghii. Afr J Microbiol Res 6:1411–1416. https://doi.org/10.5897/AJMR11.1079
Dong C, Hu D, Fu Y, Wang M, Liu H (2014) Analysis and optimization of the effect of light and nutrient solution on wheat growth and development using an inverse system model strategy. Comput Electron Agric 109:221–231. https://doi.org/10.1016/j.compag.2014.10.013
Doris CN, Chang LC, Chou GC, Lee (2007) New cultivation methods for Anoectochilus formosanus Hayata. Orchid Sci Biotechnol 1:55-60
Duncan DB (1955) Multiple range and multiple F test. Biometrics 11:1–42. https://doi.org/10.2307/3001478
Fujiwara K, Kozai T (1995) Physical microenvironment and its effects. In: Aitken-Christie A, Kozai T, Smith MAL (eds) Automation and environmental control in plant tissue culture. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 301–318
He CN, Wang CL, Guo SX, Yang JS, Xiao PG (2006) A novel flavonoid glucoside from Anoectochilus roxburghii (Wall.) Lindl. J Integrat Plant Biol 48:359–363. https://doi.org/10.1111/j.1744-7909.2006.00179.x
Huang C, Chen C (2005) Physical properties of culture vessels for plant tissue culture. Biosyst Eng 91:501–511. https://doi.org/10.1016/j.biosystemseng.2005.05.0
Ivanicka J (1987) In vitro micropropagation of mulberry, Morus nigra L. Sci Hort 32:33–39. https://doi.org/10.1016/0304-4238(87)90014-8
Jackson MB, Abbott AJ, Belcher AR, Hall KC, Butler R, Cameron J (1991) Ventilation in plant tissue cultures and effects of poor aeration on ethylene and carbon dioxide accumulation, oxygen depletion and explant development. Ann Bot 67:229–237. https://doi.org/10.1093/oxfordjournals.aob.a088127
Jan T, Gul S, Khan A, Pervez S, Noor A, Amin H, Ullah H (2021) Range of factors in the reduction of hyperhydricity associated with in vitro shoots of Salvia santolinifolia Bioss. Braz J Biol 83:e246904. https://doi.org/10.1590/1519-6984.246904
Article CAS PubMed Google Scholar
Jin CW, Liu Y, Mao QQ, Wang Q, Du ST (2013) Mild Fe-deficiency improves biomass production and quality of hydroponic-cultivated spinach plants (Spinacia oleracea L.). Food Chem 138:2188–2194
Article CAS PubMed Google Scholar
Kane ME, Philman NL (1992) Effect of culture vessel type on in vitro multiplication of Pontederia cordata. Proc Fla State Hort Soc 105:213–215
Kaur H, Sharda R, Sharma P (2015) Effect of hoagland solution for growing tomato hydroponically in green house. HortFlora Res Spect 5:310–315
Ket NV, Hahn EJ, Park SY, Chakrabarty D, Paek KY (2004) Micropropagation of an endangered orchid Anoectochilus formosanus. Biol Plant 48:339–344. https://doi.org/10.1023/B:BIOP.0000041084.77832.11
Kozai T, Smith MAL (1995) Environmental control in plant tissue culture. In: Aitken-Christie A, Kozai T, Smith MAL (eds) Automation and environmental control in plant tissue culture. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 301–318
Kumar P, Reid D, Thorpe T (1987) The role of ethylene and carbon dioxide in differentiation of shoot buds in excised cotyledons of Pinus radiata in vitro. Physiol Plant 69:244–251. https://doi.org/10.1111/j.1399-3054.1987.tb04282.x
Lee YCG, Sue YM, Lee CK, Huang HM, He JJ, Wang YS, Juan SH (2019) Synergistic effects of cAMP–dependent protein kinase A and AMP-activated protein kinase on lipolysis in kinsenoside-treated C3H10T1/2 adipocytes. Phytomedicine 55:255–263. https://doi.org/10.1016/j.phymed.2018.06.043
Article CAS PubMed Google Scholar
Lentini Z, Mussell H, Mutschler MA, Earle ED (1988) Ethylene generation and reversal of ethylene effects durine development in vitro of rapid-cycling rassica campestris L. Plant Sci 54:75–81. https://doi.org/10.1016/0168-9452(88)90057-X
Liu Q, Qiao AM, Yi LT, Liu ZL, Sheng SM (2016) Protection of kinsenoside against AGEs-induced endothelial dysfunction in human umbilical vein endothelial cells. Life Sci 162:102–107. https://doi.org/10.1016/j.lfs.2016.08.022
Article CAS PubMed Google Scholar
Liu ZL, Liu Q, Xiao B, Zhou J, Zhang JG, Li Y (2013) The vascular protective properties of kinsenoside isolated from Anoectochilus roxburghii under high glucose condition. Fitoterapia 86:163–170. https://doi.org/10.1016/j.fitote.2013.03.006
Article CAS PubMed Google Scholar
Lo KY, Ku N, Jin CS, Izzati N, Arvind B, Ning SP, Chan LK (2010) Effect of perforations of culture vessel cap on growth and leaf microstructure of in vitro plantlets of Artemisia annua L. J Med Plants Res 4:2273–2282
Luan VQ, Phuong TD, Luan TC, Nhut DT (2015) Micropropagation and β–sitosterol qualitative research on Anoectochilus setaceus Blume. J Biotechnol 13:1113–1125
Luo WY, Yang F, Piao XC, Jin MY, Tian W, Gao Y, Lian ML (2018) Promising strategy to efficiently improve the kinsenoside and polysaccharide production of rhizome cultures of Anoectochilus roxburghii (Wall.) Lindl. Ind Crops Prod 125:269–275. https://doi.org/10.1016/j.indcrop.2018.09.006
Mackay WA, Kitto SL (1988) Factors affecting in vitro shoot proliferation of French tarragon. J Amer Soc Hort Sci 113:282–287. https://doi.org/10.21273/JASHS.113.2.282
Majada JP, Sierra MI, Sanchez TR (2018) Air exchange rate affects the in vitro developed leaf cuticle of carnation. Sci Hort 87:121–130. https://doi.org/10.1016/S0304-4238(00)00162-X
Manuel M, Seemann P, Jara G, Riegel R (2009) Influence of vessel type, physical state of medium and temporary immersion on the micropropagation of three. Rhodophiala Specieschilean J Agric Res 69:281–287. https://doi.org/10.4067/S0718-58392009000400014
McClelland MT, Smith MAL (1990) Vessel type, closure, and explant orientation influence in vitro performance of five woody species. Hort Sci 25:797–800. https://doi.org/10.21273/HORTSCI.25.7.797
Molders K, Quinet M, Decat J, Secco B, Dulière E, Pieters S, Van Der Kooij T, Lutts S, Van Der Straeten D (2012) Selection and hydroponic growth of potato cultivars for bio-regenerative life support systems. Adv Space Res 50:156–165. https://doi.org/10.1016/j.foodchem.2012.12.02
Monette P (1986) Micropropagation of kiwifruit using non-axenic shoot tips. Plant Cell Tiss Org Cult 6:73–82. https://doi.org/10.1007/BF00037760
Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue. Physiol Plant 15:473–496. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
Nguyen HC, Nhu TQM, Dung PV, Hieu ND, Tuan TT, Huyen PX, Truong DH (2018) Evaluation of changes in the growth and chemical constituents of Anoectochilus formosanus Hayata grown under hydroponic conditions. Biotechnologia 99:375–383. https://doi.org/10.5114/bta.2018.79968
Nhut DT, Don NT, Vu N, Thien NQ, Thuy DTT, Duy N, Jaime ATDS (2006) Advanced technology in micropropagation of some important plants. In Jaime A. Teixeira Da Silva, ed. Floriculture, ornamental and plant biotechnology. Global Science Books, United Kingdom 2:325–335
Comments (0)