Calcium electroporation induces stress response through upregulation of HSP27, HSP70, aspartate β-hydroxylase, and CD133 in human colon cancer cells

Choromańska A, Chwiłkowska A, Kulbacka J, Baczyńska D, Rembiałkowska N, Szewczyk A et al. Modifications of Plasma Membrane Organization in Cancer Cells for Targeted Therapy. Molecules [Internet]. 2021 [cited 2023 Mar 6];26. Available from: https://pubmed.ncbi.nlm.nih.gov/33806009/

Benz R, Zimmermann U. The resealing process of lipid bilayers after reversible electrical breakdown. Biochim Biophys Acta [Internet]. 1981 [cited 2023 Mar 6];640:169–78. Available from: https://pubmed.ncbi.nlm.nih.gov/7213683/

Weaver JC, Smith KC, Esser AT, Son RS, Gowrishankar TR. A brief overview of electroporation pulse strength-duration space: A region where additional intracellular effects are expected. Bioelectrochemistry [Internet]. 2012 [cited 2023 Mar 6];87:236. Available from: https://pubmed.ncbi.nlm.nih.gov/22475953/

Pakhomov AG, Miklavcic D, Markov MS. Advanced Electroporation techniques in Biology and Medicine. Adv Electroporation Tech Biol Med; 2010.

Gothelf A, Mir LM, Gehl J. Electrochemotherapy: results of cancer treatment using enhanced delivery of bleomycin by electroporation. Cancer Treat Rev. 2003;29:371–87.

Article  CAS  PubMed  Google Scholar 

Berridge MJ, Bootman MD, Roderick HL. Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 2003 47 [Internet]. 2003 [cited 2023 Mar 6];4:517–29. Available from: https://www.nature.com/articles/nrm1155

Stojilkovic SS, Tomic´ M, Taka-Aki Koshimizu T, Goor F, Van. Calcium Ions as Intracellular Messengers. Princ Mol Regul [Internet]. 2000 [cited 2023 Mar 6];149–85. Available from: https://link.springer.com/chapter/10.1007/978-1-59259-032-2_9

Berridge MJ, Lipp P, Bootman MD. The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 2000 11 [Internet]. 2000 [cited 2023 Mar 6];1:11–21. Available from: https://www.nature.com/articles/35036035

Kulbacka J, Rembiałkowska N, Szewczyk A, Moreira H, Szyjka A, Girkontaitė I et al. The Impact of Extracellular Ca2 + and Nanosecond Electric Pulses on Sensitive and Drug-Resistant Human Breast and Colon Cancer Cells. Cancers (Basel) [Internet]. 2021 [cited 2022 Jul 22];13. Available from: /pmc/articles/PMC8268418/.

Sersa G. The state-of-the-art of electrochemotherapy before the ESOPE study; advantages and clinical uses. Eur J Cancer Suppl. 2006;4:52–9.

Article  Google Scholar 

Gothelf A, Mir LM, Gehl J, Electrochemotherapy. Results of cancer treatment using enhanced delivery of bleomycin by electroporation. Cancer Treat Rev [Internet]. 2003 [cited 2023 Mar 6];29:371–87. Available from: https://pubmed.ncbi.nlm.nih.gov/12972356/

Bleomycin With or Without Electroporation Therapy in Treating Patients With Stage III or Stage IV Melanoma. - Full Text View - ClinicalTrials.gov [Internet]. [cited 2023 Mar 6]. Available from: https://clinicaltrials.gov/ct2/show/NCT00006035

Silve A, Guimerà Brunet A, Al-Sakere B, Ivorra A, Mir LM. Comparison of the effects of the repetition rate between microsecond and nanosecond pulses: electropermeabilization-induced electro-desensitization? Biochim Biophys Acta [Internet]. 2014 [cited 2023 Mar 7];1840:2139–51. Available from: https://europepmc.org/article/med/24589913

Breton M, Mir LM. Microsecond and nanosecond electric pulses in cancer treatments. Bioelectromagnetics [Internet]. 2012 [cited 2023 Mar 7];33:106–23. Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/bem.20692

Bagur R, Hajnóczky G. Intracellular Ca2 + sensing: its role in Calcium Homeostasis and Signaling. Mol Cell. 2017;66:780–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Clapham DE. Doi:10.1016/J.Cell.2007.11.028. Cell [Internet]. 2011 [cited 2019 Nov 4];131:1–12. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18083096

Calvo-Rodriguez M, Hou SS, Snyder AC, Kharitonova EK, Russ AN, Das S et al. Increased mitochondrial calcium levels associated with neuronal death in a mouse model of Alzheimer’s disease. Nat Commun 2020 111 [Internet]. 2020 [cited 2022 Nov 17];11:1–17. Available from: https://www.nature.com/articles/s41467-020-16074-2

Romero-Garcia S, Prado-Garcia H. Mitochondrial calcium: Transport and modulation of cellular processes in homeostasis and cancer (Review). Int J Oncol [Internet]. 2019 [cited 2023 Mar 7];54:1155–67. Available from: http://www.spandidos-publications.com/https://doi.org/10.3892/ijo.2019.4696/abstract

Orrenius S, Gogvadze V, Zhivotovsky B. Calcium and mitochondria in the regulation of cell death. Biochem Biophys Res Commun. 2015;460:72–81.

Article  CAS  PubMed  Google Scholar 

Orrenius S, Zhivotovsky B, Nicotera P. Regulation of cell death: the calcium–apoptosis link. Nat Rev Mol Cell Biol 2003 47 [Internet]. 2003 [cited 2023 Mar 7];4:552–65. Available from: https://www.nature.com/articles/nrm1150

Zhivotovsky B, Orrenius S. Calcium and cell death mechanisms: a perspective from the cell death community. Cell Calcium. Elsevier Ltd; 2011. pp. 211–21.

Kanwal M, Smahel M, Olsen M, Smahelova J, Tachezy R. Aspartate ß-hydroxylase as a target for cancer therapy. J Exp Clin Cancer Res [Internet]. 2020 [cited 2023 Mar 7];39:1–12. Available from: https://jeccr.biomedcentral.com/articles/. https://doi.org/10.1186/s13046-020-01669-w

Hou G, Xu B, Bi Y, Wu C, Ru B, Sun B et al. Recent advances in research on aspartate β-hydroxylase (ASPH) in pancreatic cancer: A brief update. Bosn J Basic Med Sci [Internet]. 2018 [cited 2023 Mar 7];18:297. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC6252103/

Görlach A, Bertram K, Hudecova S, Krizanova O, Calcium. and ROS: A mutual interplay. Redox Biol. Elsevier B.V.; 2015. pp. 260–71.

Cordeiro RM. Reactive oxygen species at phospholipid bilayers: Distribution, mobility and permeation. Biochim Biophys Acta - Biomembr [Internet]. 2014 [cited 2021 Jan 7];1838:438–44. Available from: https://pubmed.ncbi.nlm.nih.gov/24095673/

Yan Y, Wei CL, Zhang WR, Cheng HP, Liu J. Cross-talk between calcium and reactive oxygen species signaling. Acta Pharmacol Sin [Internet]. 2006 [cited 2023 Mar 6];27:821–6. Available from: https://pubmed.ncbi.nlm.nih.gov/16787564/

Liou GY, Storz P. Reactive oxygen species in cancer. Free Radic Res [Internet]. 2010;44:479–96. Available from: /pmc/articles/PMC3880197/.

Article  CAS  PubMed  Google Scholar 

Szlasa W, Kiełbik A, Szewczyk A, Rembiałkowska N, Novickij V, Tarek M et al. Oxidative Effects during Irreversible Electroporation of Melanoma Cells—In Vitro Study. Molecules [Internet]. 2021 [cited 2023 Mar 7];26. Available from: https://pubmed.ncbi.nlm.nih.gov/33396317/

Novickij V, Rembiałkowska N, Kasperkiewicz-Wasilewska P, Baczyńska D, Rzechonek A, Błasiak P, et al. Pulsed electric fields with calcium ions stimulate oxidative alternations and lipid peroxidation in human non-small cell lung cancer. Biochim Biophys Acta - Biomembr. 2022;1864:184055.

Article  CAS  PubMed  Google Scholar 

Driedonks N, Xu J, Peters JL, Park S, Rieu I. Multi-level interactions between heat shock factors, heat shock proteins, and the redox system regulate acclimation to heat. Front Plant Sci. 2015;6:999.

Article  PubMed  PubMed Central  Google Scholar 

Madamanchi NR, Li S, Patterson C, Runge MS. Reactive oxygen species regulate heat-shock protein 70 via the JAK/STAT pathway. Arterioscler Thromb Vasc Biol [Internet]. 2001 [cited 2023 Mar 10];21:321–6. Available from: https://pubmed.ncbi.nlm.nih.gov/11231909/

Peng TI, Jou MJ. Oxidative stress caused by mitochondrial calcium overload. Ann N Y Acad Sci [Internet]. 2010 [cited 2023 Mar 10];1201:183–8. Available from: https://pubmed.ncbi.nlm.nih.gov/20649555/

Shan Q, Ma F, Wei J, Li H, Ma H, Sun P. Physiological Functions of Heat Shock Proteins. Curr Protein Pept Sci [Internet]. 2020 [cited 2023 Mar 10];21:751–60. Available from: https://pubmed.ncbi.nlm.nih.gov/31713482/

Das JK, Xiong X, Ren X, Yang JM, Song J. Heat shock proteins in cancer immunotherapy. J Oncol. 2019;2019.

Albakova Z, Mangasarova Y. The HSP Immune Network in Cancer. Front Immunol. 2021;12:5162.

Article  Google Scholar 

Milani V, Noessner E, Ghose S, Kuppner M, Ahrens B, Scharner A et al. Heat shock protein 70: role in antigen presentation and immune stimulation. Int J Hyperthermia [Internet]. 2002 [cited 2023 Mar 10];18:563–75. Available from: https://pubmed.ncbi.nlm.nih.gov/12537755/

Zhao J, Chen S, Zhu L, Zhang L, Liu J, Xu D, et al. Antitumor Effect and Immune Response of Nanosecond Pulsed Electric fields in Pancreatic Cancer. Front Oncol. 2021;10:3376.

Article  Google Scholar 

Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature [Internet]. 2006 [cited 2023 Mar 10];444:756–60. Available from: https://pubmed.ncbi.nlm.nih.gov/17051156/

Visvader JE, Lindeman GJ. Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer [Internet]. 2008 [cited 2023 Mar 10];8:755–68. Available from: https://pubmed.ncbi.nlm.nih.gov/18784658/

Broholm M, Stigaard T, Bulut M, Vogelsang R, Gögenur I, Gehl J. Calcium electroporation for the treatment of colorectal cancer calcium endove – preliminary results. Eur J Surg Oncol [Internet]. 2019 [cited 2023 Mar 6];45:e119. Available from: http://www.ejso.com/article/S0748798318318122/fulltext

Falk H, Matthiessen LW, Wooler G, Gehl J. Calcium electroporation for treatment of cutaneous metastases; a randomized double-blinded phase II study, comparing the effect of calcium electroporation with electrochemotherapy. https://doi.org/101080/0284186X20171355109 [Internet]. 2017 [cited 2023 Mar 6];57:311–9. Available from: https://www.tandfonline.com/doi/abs/https://doi.org/10.1080/0284186X.2017.1355109

Kiełbik A, Szlasa W, Michel O, Szewczyk A, Tarek M, Saczko J et al. In Vitro Study of Calcium Microsecond Electroporation of Prostate Adenocarcinoma Cells. Mol 2020, Vol 25, Page 5406 [Internet]. 2020 [cited 2023 Mar 6];25:5406. Available from: https://www.mdpi.com/1420-3049/25/22/5406/htm

Romeo S, Sannino A, Scarfì MR, Vernier PT, Cadossi R, Gehl J, et al. ESOPE-Equivalent pulsing protocols for Calcium Electroporation: an in vitro optimization study on 2 Cancer Cell models. Technol Cancer Res Treat [Internet]. 2018;17:1–10. Available from: /pmc/articles/PMC6053871/.

Google Scholar 

Gehl J, Sersa G, Garbay J, Soden D, Rudolf Z, Marty M et al. Results of the ESOPE (European Standard Operating Procedures on Electrochemotherapy) study: Efficient, highly tolerable and simple palliative treatment of cutaneous and subcutaneous metastases from cancers of any histology. 2006;24:8047–8047. https://doi.org/10.1200/jco20062418_suppl8047.

Radzevičiūtė E, Malyško-Ptašinskė V, Kulbacka J, Rembiałkowska N, Novickij J, Girkontaitė I, et al. Nanosecond electrochemotherapy using bleomycin or doxorubicin: influence of pulse amplitude, duration and burst frequency. Bioelectrochemistry. 2022;148:108251.

Article  PubMed  Google Scholar 

Kraemer MM, Tsimpaki T, Berchner-Pfannschmidt U, Bechrakis NE, Seitz B, Fiorentzis M. Calcium Electroporation Reduces Viability and Proliferation Capacity of Four Uveal Melanoma Cell Lines in 2D and 3D Cultures. Cancers 2022, Vol 14, Page 2889 [Internet]. 2022 [cited 2023 Mar 6];14:2889. Available from: https://www.mdpi.com/2072-6694/14/12/2889/htm.

Frandsen SK, Vissing M, Gehl J. A Comprehensive Review of Calcium Electroporation—A Novel Cancer Treatment Modality. Cancers. 2020, Vol 12, Page 290 [Internet]. 2020 [cited 2023 Mar 6];12:290. Available from: https://www.mdpi.com/2072-6694/12/2/290/htm

Hoejholt KL, Mužić T, Jensen SD, Dalgaard LT, Bilgin M, Nylandsted J et al. Calcium electroporation and electrochemotherapy for cancer treatment: Importance of cell membrane composition investigated by lipidomics, calorimetry and in vitro efficacy. Sci Reports 2019 91 [Internet]. 2019 [cited 2023 Mar 6];9:1–12. Available from: https://www.nature.com/articles/s41598-019-41188-z

Ágoston D, Baltás E, Ócsai H, Rátkai S, Lázár PG, Korom I et al. Evaluation of Calcium Electroporation for the Treatment of Cutaneous Metastases: A Double Blinded Randomised Controlled Phase II Trial. Cancers 2020, Vol 12, Page 179 [Internet]. 2020 [cited 2023 Mar 10];12:179. Available from: https://www.mdpi.com/2072-6694/12/1/179/htm

Frandsen SK, Gehl J. Effect of calcium electroporation in combination with metformin in vivo and correlation between viability and intracellular ATP level after calcium electroporation in vitro. PLoS One [Internet]. 2017 [cited 2023 Mar 6];12:e0181839. Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0181839

Frandsen SK, Gissel H, Hojman P, Tramm T, Eriksen J, Gehl J. Direct therapeutic applications of calcium electroporation to effectively induce tumor necrosis. Cancer Res. 2012;72:1336–41.

Article  CAS  PubMed  Google Scholar 

Szewczyk A, Gehl J, Daczewska M, Saczko J, Frandsen SK, Kulbacka J. Calcium electroporation for treatment of sarcoma in preclinical studies. Oncotarget [Internet]. 2018 [cited 2021 Jan 13];9:11604–18. Available from: https://pubmed.ncbi.nlm.nih.gov/29545923/

Frandsen SK, Gissel H, Hojman P, Eriksen J, Gehl J. Calcium electroporation in three cell lines: a comparison of bleomycin and calcium, calcium compounds, and pulsing conditions. Biochim Biophys Acta - Gen Subj. 2014;1840:1204–8.

Article  CAS  Google Scholar 

Romeo S, Frandsen SK, Gehl J, Zeni O. Calcium Electroporation: An Overview of an Innovative Cancer Treatment Approach. Prog Electromagn Res Symp. 2019;2019-June:2979–84.

Jensen KB, Lonkvist CK, Gehl J, Vissing M. Calcium Electroporation for Management of Cutaneous Metastases in HER2-Positive Breast Cancer: A Case Report. Case Rep Dermatol [Internet]. 2022 [cited 2023 Mar 10];14:330–8. Available from: https://www.karger.com/Article/FullText/526157

Pervan M, Vissing M, Princk H, Ploeen J, Vestergaard K, Schnefeldt M et al. 1295TiP Investigation of calcium electroporation (CaEP) therapy in malignant cutaneous and subcutaneous tumours: A non-randomized phase II clinical trial of a novel palliative therapy. Ann Oncol [Internet]. 2022 [cited 2023 Mar 10];33:S1134–5. Available from: http://www.annalsofoncology.org/article/S0923753422032781/fulltext

Bazancir LA, Egeland C, Garbyal RS, Gehl KJ, Achiam MP. Endoscopic Calcium Electroporation in Patients with Barrett’s Esophagus High-Grade Dysplasia: A First-in-Man Phase I Study. J Am Coll Surg [Internet]. 2022 [cited 2023 Mar 10];235:S25–S25. Available from: https://journals.lww.com/journalacs/Fulltext/2022/11002/Endoscopic_Calcium_Electroporation_in_Patients.57.aspx

Frandsen SK, Thoefner MS, Gehl J. Calcium Electroporation in Veterinary Medicine. Electroporation Vet Oncol Pract [Internet]. 2021 [cited 2023 Mar 10];145–64. Available from: https://link.springer.com/chapter/10.1007/978-3-030-80668-2_6

Szewczyk A, Saczko J, Kulbacka J. Apoptosis as the main type of cell death induced by calcium electroporation in rhabdomyosarcoma cells. Bioelectrochemistry. 2020;136:107592.

Article  CAS  PubMed  Google Scholar 

Zielichowska A, Daczewska M, Saczko J, Michel O, Kulbacka J. Applications of calcium electroporation to effective apoptosis induction in fibrosarcoma cells and stimulation of normal muscle cells. Bioelectrochemistry. 2016;109:70–8.

Article  CAS  PubMed  Google Scholar 

Arai S, Miyake K, Voit R, Nemoto S, Wakeland EK, Grummt I et al. Death-effector domain-containing protein DEDD is an inhibitor of mitotic Cdk1/cyclin B1. Proc Natl Acad Sci U S A [Internet]. 2007 [cited 2023 Mar 10];104:2289–94. Available from: https://www.pnas.org/doi/abs/https://doi.org/10.1073/pnas.0611167104

Batista Napotnik T, Polajžer T, Miklavčič D. Cell death due to electroporation – a review. Bioelectrochemistry. 2021;141:107871.

Article  CAS  PubMed  Google Scholar 

Alcivar A, Hu S, Tang J, Yang X. DEDD and DEDD2 associate with caspase-8/10 and signal cell death. Oncogene 2003 222 [Internet]. 2003 [cited 2023 Mar 10];22:291–7. Available from: https://www.nature.com/articles/1206099

Probst U, Fuhrmann I, Beyer L, Wiggermann P. Electrochemotherapy as a New Modality in Interventional Oncology: A Review. Technol Cancer Res Treat [Internet]. 2018 [cited 2023 Mar 10];1;17:1533033818785329. Available from: https://pubmed.ncbi.nlm.nih.gov/29986632/

Esmaeili N, Friebe M, Electrochemotherapy. A Review of Current Status, Alternative IGP Approaches, and Future Perspectives. J Healthc Eng. 2019;2019.

Silve A, Guimerà Brunet A, Al-Sakere B, Ivorra A, Mir LM. Comparison of the effects of the repetition rate between microsecond and nanosecond pulses: electropermeabilization-induced electro-desensitization? Biochim Biophys Acta [Internet]. 2014 [cited 2023 Mar 10];1840:2139–51. Available from: https://pubmed.ncbi.nlm.nih.gov/24589913/

Sözer EB, Pocetti CF, Vernier PT. Asymmetric Patterns of Small Molecule Transport After Nanosecond and Microsecond Electropermeabilization. J Membr Biol [Internet]. 2018 [cited 2023 Mar 10];251:197–210. Available from: https://link.springer.com/article/10.1007/s00232-017-9962-1

Comments (0)

No login
gif