Serotonin regulates in a cell-type specific manner light-evoked response and synaptic activity in mouse retinal ganglion cells

Jacob SN, Nienborg H. Monoaminergic neuromodulation of sensory processing. Front Neural Circuits. 2018;12:51.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Svob Strac D, Pivac N, Muck-Seler D. The serotonergic system and cognitive function. Transl Neurosci. 2016;7(1):35–49.

Article  PubMed  PubMed Central  Google Scholar 

Masson J. Serotonin in retina. Biochimie. 2019;161:51–5.

Article  PubMed  CAS  Google Scholar 

Pootanakit K, Brunken WJ. 5-HT(1A) and 5-HT(7) receptor expression in the mammalian retina. Brain Res. 2000;875(1–2):152–6.

Article  PubMed  CAS  Google Scholar 

Pootanakit K, Brunken WJ. Identification of 5-HT(3A) and 5-HT(3B) receptor subunits in mammalian retinae: potential pre-synaptic modulators of photoreceptors. Brain Res. 2001;896(1–2):77–85.

Article  PubMed  CAS  Google Scholar 

Pootanakit K, et al. 5-HT2a receptors in the rabbit retina: potential presynaptic modulators. Vis Neurosci. 1999;16(2):221–30.

Article  PubMed  CAS  Google Scholar 

Collier RJ, et al. Agonists at the serotonin receptor [5-HT(1A)] protect the retina from severe photo-oxidative stress. Invest Ophthalmol Vis Sci. 2011;52(5):2118–26.

Article  PubMed  CAS  Google Scholar 

Perez-Leon JA, et al. Distribution of 5-hydroxytriptamine2C receptor mRNA in rat retina. Brain Res Mol Brain Res. 2004;125(1–2):140–2.

Article  PubMed  CAS  Google Scholar 

Sharif NA, Senchyna M. Serotonin receptor subtype mRNA expression in human ocular tissues, determined by RT-PCR. Mol Vis. 2006;12:1040–7.

PubMed  CAS  Google Scholar 

Han L, Zhong YM, Yang XL. 5-HT2A receptors are differentially expressed in bullfrog and rat retinas: a comparative study. Brain Res Bull. 2007;73(4–6):273–7.

Article  PubMed  CAS  Google Scholar 

Lu Q, Ivanova E, Pan ZH. Characterization of green fluorescent protein-expressing retinal cone bipolar cells in a 5-hydroxytryptamine receptor 2a transgenic mouse line. Neuroscience. 2009;163(2):662–8.

Article  PubMed  CAS  Google Scholar 

Wassle H, Voigt T, Patel B. Morphological and immunocytochemical identification of indoleamine-accumulating neurons in the cat retina. J Neurosci. 1987;7(5):1574–85.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Vigh J, Banvolgyi T, Wilhelm M. Amacrine cells of the anuran retina: morphology, chemical neuroanatomy, and physiology. Microsc Res Tech. 2000;50(5):373–83.

Article  PubMed  CAS  Google Scholar 

Vaney DI. Morphological identification of serotonin-accumulating neurons in the living retina. Science. 1986;233(4762):444–6.

Article  PubMed  CAS  Google Scholar 

Ghai K, Zelinka C, Fischer AJ. Serotonin released from amacrine neurons is scavenged and degraded in bipolar neurons in the retina. J Neurochem. 2009;111(1):1–14.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Hurd LB 2nd, Eldred WD. Synaptic microcircuitry of bipolar and amacrine cells with serotonin-like immunoreactivity in the retina of the turtle, Pseudemys scripta elegans. Vis Neurosci. 1993;10(3):455–71.

Article  PubMed  Google Scholar 

Zhu B, Gabriel R, Straznicky C. Serotonin synthesis and accumulation by neurons of the anuran retina. Vis Neurosci. 1992;9(3–4):377–88.

Article  PubMed  CAS  Google Scholar 

Redburn DA, Churchill L. An indoleamine system in photoreceptor cell terminals of the Long-Evans rat retina. J Neurosci. 1987;7(2):319–29.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Gastinger MJ, et al. Serotonergic retinopetal axons in the monkey retina. Curr Eye Res. 2005;30(12):1089–95.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Frazao R, et al. Evidence of reciprocal connections between the dorsal raphe nucleus and the retina in the monkey Cebus apella. Neurosci Lett. 2008;430(2):119–23.

Article  PubMed  CAS  Google Scholar 

Gastinger MJ, et al. Retinopetal axons in mammals: emphasis on histamine and serotonin. Curr Eye Res. 2006;31(7–8):655–67.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Lima L, Urbina M. Serotonergic projections to the retina of rat and goldfish. Neurochem Int. 1998;32(2):133–41.

Article  PubMed  CAS  Google Scholar 

Brunken WJ, Jin XT. A role for 5HT3 receptors in visual processing in the mammalian retina. Vis Neurosci. 1993;10(3):511–22.

Article  PubMed  CAS  Google Scholar 

Brunken WJ, Daw NW. 5-HT2 antagonists reduce ON responses in the rabbit retina. Brain Res. 1986;384(1):161–5.

Article  PubMed  CAS  Google Scholar 

Mangel SC, Brunken WJ. The effects of serotonin drugs on horizontal and ganglion cells in the rabbit retina. Vis Neurosci. 1992;8(3):213–8.

Article  PubMed  CAS  Google Scholar 

Thier P, Wassle H. Indoleamine-mediated reciprocal modulation of on-centre and off-centre ganglion cell activity in the retina of the cat. J Physiol. 1984;351:613–30.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Trakhtenberg EF, et al. Serotonin receptor 2C regulates neurite growth and is necessary for normal retinal processing of visual information. Dev Neurobiol. 2017;77(4):419–37.

Article  PubMed  CAS  Google Scholar 

Zhou X, et al. Activation of 5-HT1A receptors promotes retinal ganglion cell function by inhibiting the cAMP-PKA pathway to modulate presynaptic GABA release in chronic Glaucoma. J Neurosci. 2019;39(8):1484–504.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Zhou X, et al. 5-HT1A receptor agonist promotes retinal ganglion cell function by inhibiting OFF-type presynaptic glutamatergic activity in a chronic Glaucoma model. Front Cell Neurosci. 2019;13:167.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Kristensen AS, et al. SLC6 neurotransmitter transporters: structure, function, and regulation. Pharmacol Rev. 2011;63(3):585–640.

Article  PubMed  CAS  Google Scholar 

Narboux-Neme N, et al. Serotonin transporter transgenic (SERTcre) mouse line reveals developmental targets of serotonin specific reuptake inhibitors (SSRIs). Neuropharmacology. 2008;55(6):994–1005.

Article 

Comments (0)

No login
gif