Jacob SN, Nienborg H. Monoaminergic neuromodulation of sensory processing. Front Neural Circuits. 2018;12:51.
Article PubMed PubMed Central CAS Google Scholar
Svob Strac D, Pivac N, Muck-Seler D. The serotonergic system and cognitive function. Transl Neurosci. 2016;7(1):35–49.
Article PubMed PubMed Central Google Scholar
Masson J. Serotonin in retina. Biochimie. 2019;161:51–5.
Article PubMed CAS Google Scholar
Pootanakit K, Brunken WJ. 5-HT(1A) and 5-HT(7) receptor expression in the mammalian retina. Brain Res. 2000;875(1–2):152–6.
Article PubMed CAS Google Scholar
Pootanakit K, Brunken WJ. Identification of 5-HT(3A) and 5-HT(3B) receptor subunits in mammalian retinae: potential pre-synaptic modulators of photoreceptors. Brain Res. 2001;896(1–2):77–85.
Article PubMed CAS Google Scholar
Pootanakit K, et al. 5-HT2a receptors in the rabbit retina: potential presynaptic modulators. Vis Neurosci. 1999;16(2):221–30.
Article PubMed CAS Google Scholar
Collier RJ, et al. Agonists at the serotonin receptor [5-HT(1A)] protect the retina from severe photo-oxidative stress. Invest Ophthalmol Vis Sci. 2011;52(5):2118–26.
Article PubMed CAS Google Scholar
Perez-Leon JA, et al. Distribution of 5-hydroxytriptamine2C receptor mRNA in rat retina. Brain Res Mol Brain Res. 2004;125(1–2):140–2.
Article PubMed CAS Google Scholar
Sharif NA, Senchyna M. Serotonin receptor subtype mRNA expression in human ocular tissues, determined by RT-PCR. Mol Vis. 2006;12:1040–7.
Han L, Zhong YM, Yang XL. 5-HT2A receptors are differentially expressed in bullfrog and rat retinas: a comparative study. Brain Res Bull. 2007;73(4–6):273–7.
Article PubMed CAS Google Scholar
Lu Q, Ivanova E, Pan ZH. Characterization of green fluorescent protein-expressing retinal cone bipolar cells in a 5-hydroxytryptamine receptor 2a transgenic mouse line. Neuroscience. 2009;163(2):662–8.
Article PubMed CAS Google Scholar
Wassle H, Voigt T, Patel B. Morphological and immunocytochemical identification of indoleamine-accumulating neurons in the cat retina. J Neurosci. 1987;7(5):1574–85.
Article PubMed PubMed Central CAS Google Scholar
Vigh J, Banvolgyi T, Wilhelm M. Amacrine cells of the anuran retina: morphology, chemical neuroanatomy, and physiology. Microsc Res Tech. 2000;50(5):373–83.
Article PubMed CAS Google Scholar
Vaney DI. Morphological identification of serotonin-accumulating neurons in the living retina. Science. 1986;233(4762):444–6.
Article PubMed CAS Google Scholar
Ghai K, Zelinka C, Fischer AJ. Serotonin released from amacrine neurons is scavenged and degraded in bipolar neurons in the retina. J Neurochem. 2009;111(1):1–14.
Article PubMed PubMed Central CAS Google Scholar
Hurd LB 2nd, Eldred WD. Synaptic microcircuitry of bipolar and amacrine cells with serotonin-like immunoreactivity in the retina of the turtle, Pseudemys scripta elegans. Vis Neurosci. 1993;10(3):455–71.
Zhu B, Gabriel R, Straznicky C. Serotonin synthesis and accumulation by neurons of the anuran retina. Vis Neurosci. 1992;9(3–4):377–88.
Article PubMed CAS Google Scholar
Redburn DA, Churchill L. An indoleamine system in photoreceptor cell terminals of the Long-Evans rat retina. J Neurosci. 1987;7(2):319–29.
Article PubMed PubMed Central CAS Google Scholar
Gastinger MJ, et al. Serotonergic retinopetal axons in the monkey retina. Curr Eye Res. 2005;30(12):1089–95.
Article PubMed PubMed Central CAS Google Scholar
Frazao R, et al. Evidence of reciprocal connections between the dorsal raphe nucleus and the retina in the monkey Cebus apella. Neurosci Lett. 2008;430(2):119–23.
Article PubMed CAS Google Scholar
Gastinger MJ, et al. Retinopetal axons in mammals: emphasis on histamine and serotonin. Curr Eye Res. 2006;31(7–8):655–67.
Article PubMed PubMed Central CAS Google Scholar
Lima L, Urbina M. Serotonergic projections to the retina of rat and goldfish. Neurochem Int. 1998;32(2):133–41.
Article PubMed CAS Google Scholar
Brunken WJ, Jin XT. A role for 5HT3 receptors in visual processing in the mammalian retina. Vis Neurosci. 1993;10(3):511–22.
Article PubMed CAS Google Scholar
Brunken WJ, Daw NW. 5-HT2 antagonists reduce ON responses in the rabbit retina. Brain Res. 1986;384(1):161–5.
Article PubMed CAS Google Scholar
Mangel SC, Brunken WJ. The effects of serotonin drugs on horizontal and ganglion cells in the rabbit retina. Vis Neurosci. 1992;8(3):213–8.
Article PubMed CAS Google Scholar
Thier P, Wassle H. Indoleamine-mediated reciprocal modulation of on-centre and off-centre ganglion cell activity in the retina of the cat. J Physiol. 1984;351:613–30.
Article PubMed PubMed Central CAS Google Scholar
Trakhtenberg EF, et al. Serotonin receptor 2C regulates neurite growth and is necessary for normal retinal processing of visual information. Dev Neurobiol. 2017;77(4):419–37.
Article PubMed CAS Google Scholar
Zhou X, et al. Activation of 5-HT1A receptors promotes retinal ganglion cell function by inhibiting the cAMP-PKA pathway to modulate presynaptic GABA release in chronic Glaucoma. J Neurosci. 2019;39(8):1484–504.
Article PubMed PubMed Central CAS Google Scholar
Zhou X, et al. 5-HT1A receptor agonist promotes retinal ganglion cell function by inhibiting OFF-type presynaptic glutamatergic activity in a chronic Glaucoma model. Front Cell Neurosci. 2019;13:167.
Article PubMed PubMed Central CAS Google Scholar
Kristensen AS, et al. SLC6 neurotransmitter transporters: structure, function, and regulation. Pharmacol Rev. 2011;63(3):585–640.
Article PubMed CAS Google Scholar
Narboux-Neme N, et al. Serotonin transporter transgenic (SERTcre) mouse line reveals developmental targets of serotonin specific reuptake inhibitors (SSRIs). Neuropharmacology. 2008;55(6):994–1005.
Comments (0)