Green Synthesis of Copper Nanoparticles using L. Extract Improves the Developmental Competence of Mouse Oocytes during in Vitro Maturation

Bahrami M, Cottee PA. Culture conditions for in vitro maturation of oocytes–A review. Reprod Breed. 2022;2:31–6.

Article  Google Scholar 

Abdel-Halim B, Helmy NA. Effect of nano-selenium and nano-zinc particles during in vitro maturation on the developmental competence of bovine oocytes. Anim Prod Sci. 2017;58:2021–8.

Article  Google Scholar 

Roy P-K, Qamar A-Y, Tanga B-M, Bang S, Seong G, Fang X, et al. Modified Spirulina maxima Pectin nanoparticles improve the Developmental competence of in Vitro Matured Porcine oocytes. Animals. 2021;11:2483.

Article  PubMed Central  PubMed  Google Scholar 

Jazvinšćak Jembrek M, Vlainić J, Radovanović V, Erhardt J, Oršolić N. Effects of copper overload in P19 neurons: impairment of glutathione redox homeostasis and crosstalk between caspase and calpain protease systems in ROS-induced apoptosis. Biometals. 2014;27:1303–22.

Article  PubMed  Google Scholar 

Anchordoquy JM, Anchordoquy JP, Nikoloff N, Pascua AM, Furnus CC. High copper concentrations produce genotoxicity and cytotoxicity in bovine cumulus cells. Environ Sci Pollut Res. 2017;24:20041–9.

Article  CAS  Google Scholar 

Choi H, Lee J, Yoon JD, Hwang S-U, Cai L, Kim M, et al. The effect of copper supplementation on in vitro maturation of porcine cumulus-oocyte complexes and subsequent developmental competence after parthenogenetic activation. Theriogenology. 2021;164:84–92.

Article  CAS  PubMed  Google Scholar 

Herman A, Kozlowski H, Czauderna M, Kochman K, Kulon K, Gajewska A. Gonadoliberin (GnRH) and its copper complex (Cu-GnRH) enzymatic degradation in hypothalamic and pituitary tissue in vitro. J Physiol Pharmacol. 2012;63:69.

CAS  PubMed  Google Scholar 

Zischka H, Einer C. Mitochondrial copper homeostasis and its derailment in Wilson disease. Int J Biochem Cell Biol. 2018;102:71–5.

Article  CAS  PubMed  Google Scholar 

Khadem-Ansari M-H, Asoudeh M, Gheshlaghi HFK, Nozari S, Zarringol M, Maroufi NF, Faridvand Y. Copper and zinc in stage I multiple myeloma: relation with ceruloplasmin, lipid peroxidation, and superoxide dismutase activity. Hormone molecular biology and clinical investigation. 2019;37.Din MI, Rehan R. Synthesis, characterization, and applications of copper nanoparticles. Analytical Letters. 2017;50:50–62.

Roychoudhury S, Nath S, Massanyi P, Stawarz R, Kacaniova M, Kolesarova A. Copper-induced changes in reproductive functions: in vivo and in vitro effects. Physiol Res. 2016;65(1):11–22. https://doi.org/10.33549/physiolres.933063.

Article  CAS  PubMed  Google Scholar 

Din MI, Rehan R. Synthesis, characterization, and applications of copper nanoparticles. Anal Lett. 2017;50:50–62.

Article  CAS  Google Scholar 

Xiong J, Wang Y, Xue Q, Wu X. Synthesis of highly stable dispersions of nanosized copper particles using L-ascorbic acid. Green Chem. 2011;13:900–4.

Article  CAS  Google Scholar 

Hussain I, Singh N, Singh A, Singh H, Singh S. Green synthesis of nanoparticles and its potential application. Biotechnol Lett. 2016;38:545–60.

Article  CAS  PubMed  Google Scholar 

Altammar KA. A review on nanoparticles: characteristics, synthesis, applications, and challenges. Front Microbiol. 2023;17:14:1155622. https://doi.org/10.3389/fmicb.2023.1155622.

Article  Google Scholar 

Chopra H, Bibi S, Singh I, Hasan MM, Khan MS, Yousafi Q, Baig AA, Rahman MM, Islam F, Emran TB, Cavalu S. Green metallic nanoparticles: biosynthesis to applications. Front Bioeng Biotechnol. 2022;10:874742. https://doi.org/10.3389/fbioe.2022.874742.

Article  PubMed Central  PubMed  Google Scholar 

El Shafey AM. Green synthesis of metal and metal oxide nanoparticles from plant leaf extracts and their applications: a review. Green Process Synthesis. 2020;9:304–39.

Article  Google Scholar 

Martínez-Cabanas M, López-García M, Rodríguez-Barro P, Vilariño T, Lodeiro P, Herrero R, Barriada JL. Sastre De Vicente ME. Antioxidant Capacity Assessment of Plant Extracts for Green Synthesis of Nanoparticles. Nanomaterials (Basel). 2021;11(7):1679. https://doi.org/10.3390/nano11071679.

Article  CAS  PubMed  Google Scholar 

Antunes Filho S, Dos Santos MS, Dos Santos OAL, Backx BP, Soran ML, Opriş O, Lung I, Stegarescu A, Bououdina M. Biosynthesis of nanoparticles using plant extracts and essential oils. Molecules. 2023;28(7):3060. https://doi.org/10.3390/molecules28073060.

Article  PubMed Central  CAS  PubMed  Google Scholar 

Suresh D, Nethravathi PC, Udayabhanu, Rajanaika H, Nagabhushana H, Sharma SC. Green synthesis of multifunctional zinc oxide (ZnO) nanoparticles using Cassia fistula plant extract and their photodegradative, antioxidant and antibacterial activities. Mater Sci Semiconduct Process. 2015;31:446–54. https://doi.org/10.1016/j.mssp.2014.12.023.

Article  CAS  Google Scholar 

Küp FÖ, Çoşkunçay S, Duman F. Biosynthesis of silver nanoparticles using leaf extract of Aesculus hippocastanum (horse chestnut): evaluation of their antibacterial, antioxidant and drug release system activities. Mater Sci Eng C Mater Biol Appl. 2020;107:110207. https://doi.org/10.1016/j.msec.2019.110207.

Article  CAS  PubMed  Google Scholar 

Bikdeloo M, Ahsani Irvani M, Roosta HR, Ghanbari D. Green synthesis of copper nanoparticles using Rosemary Extract to Reduce Postharvest decays caused by Botrytis Cinerea in Tomato. J Nanostruct. 2021;11(4):834–41. https://doi.org/10.22052/JNS.2021.04.020.

Article  CAS  Google Scholar 

Nzilu DM, Madivoli ES, Makhanu DS, et al. Green synthesis of copper oxide nanoparticles and its efficiency in degradation of rifampicin antibiotic. Sci Rep. 2023;13:14030. https://doi.org/10.1038/s41598-023-41119-z.

Article  PubMed Central  CAS  PubMed  Google Scholar 

Zhang M, Wang W, Zhang D, Zhang Y, Li Y, Fang F, Zhang Z, Zhang Y. Copper oxide nanoparticles impair oocyte meiosis maturation by inducing mitochondrial dysfunction and oxidative stress. Free Radic Biol Med. 2024;213:274–84. https://doi.org/10.1016/j.freeradbiomed.2024.01.027.

Article  CAS  PubMed  Google Scholar 

Tousson E, Bayomy MF, Ahmed AA. Rosemary extract modulates fertility potential, DNA fragmentation, injury, KI67 and P53 alterations induced by etoposide in rat testes. Biomed Pharmacother. 2018;98:769–74.

Article  CAS  PubMed  Google Scholar 

Yang J, Goksen G, Zhang W. Rosemary essential oil: Chemical and biological properties, with emphasis on its delivery systems for food preservation. Food Control. 2023;154:110003.

Article  CAS  Google Scholar 

Andrade JM, Faustino C, Garcia C, Ladeiras D, Reis CP, Rijo P. Rosmarinus officinalis L.: an update review of its phytochemistry and biological activity. Future Sci OA. 2018;4:FSO283.

Article  PubMed Central  CAS  PubMed  Google Scholar 

Wollinger A, Perrin E, Chahboun J, Jeannot V, Touraud D, Kunz W. Antioxidant activity of hydro distillation water residues from Rosmarinus officinalis L. leaves determined by DPPH assays. C R Chim. 2016;19:754–65.

Article  CAS  Google Scholar 

Attia YA, Hamed RS, Bovera F, Abd El AE-HE, Al-Harthi MA, Shahba HA. Semen quality, antioxidant status, and reproductive performance of rabbits bucks fed milk thistle seeds and rosemary leaves. Anim Reprod Sci. 2017;184:178–86.

Article  CAS  PubMed  Google Scholar 

Luño V, Gil L, Olaciregui M, González N, Jerez RA, De Blas I. Rosmarinic acid improves function and in vitro fertilizing ability of boar sperm after cryopreservation. Cryobiology. 2014;69:157–62.

Article  PubMed  Google Scholar 

Malo C, Gil L, Gonzalez N, Martínez F, Cano R, De Blas I, Espinosa E. Anti-oxidant supplementation improves boar sperm characteristics and fertility after cryopreservation: comparison between cysteine and rosemary (Rosmarinus officinalis). Cryobiology. 2010;61:142–7.

Article  CAS  PubMed  Google Scholar 

Phipps KR, Danielewska-Nikiel B, Mushonganono J, Baldwin N. Reproductive and developmental toxicity screening study of an acetone extract of Rosemary. Regul Toxicol Pharmacol. 2021;120:104840.

Article  CAS  PubMed  Google Scholar 

Zhang Y, Guo J, Nie XW, Li ZY, Wang YM, Liang S, Li S. Rosmarinic acid treatment during porcine oocyte maturation attenuates oxidative stress and improves subsequent embryo development in vitro. PeerJ. 2019;7:e6930. https://doi.org/10.7717/peerj.6930.

Article  PubMed Central  PubM

Comments (0)

No login
gif