CE-MS-Based Clinical Metabolomics of Human Plasma

Mamani-Huanca M, Villaseñor A, Gonzalez-Riano C et al (2023) Capillary electrophoresis mass spectrometry-based untargeted metabolomics to approach disease diagnosis. TRAC-Trend Anal Chem 162:117049

Article  CAS  Google Scholar 

Mamani-Huanca M, la Fuente AG, de Otero A et al (2021) Enhancing confidence of metabolite annotation in Capillary Electrophoresis-Mass Spectrometry untargeted metabolomics with relative migration time and in-source fragmentation. J Chromatogr A 1635:461758

Article  CAS  PubMed  Google Scholar 

Codesido S, Drouin N, Ferré S et al (2021) New insights into the conversion of electropherograms to the effective electrophoretic mobility scale. Electrophoresis 42:1875–1884

Article  CAS  PubMed  PubMed Central  Google Scholar 

López-López Á, Ciborowski M, Niklinski J et al (2022) Optimization of capillary electrophoresis coupled to negative mode electrospray ionization-mass spectrometry using polyvinyl alcohol coated capillaries. Application to a study on non-small cell lung cancer. Anal Chim Acta 1226:340259

Article  PubMed  Google Scholar 

Tobolkina E, Pamies D, Zurich M-G et al (2023) Bringing CE-MS into the regulatory toxicology toolbox: Application to neuroinflammation screening. Microchem J 193:109048

Article  CAS  Google Scholar 

Ishibashi Y, Harada S, Takeuchi A et al (2021) Reliability of urinary charged metabolite concentrations in a large-scale cohort study using capillary electrophoresis-mass spectrometry. Sci Rep 11:7407

Article  CAS  PubMed  PubMed Central  Google Scholar 

ISO (2021) Molecular in vitro diagnostic examinations — specifications for pre-examination processes in metabolomics in urine, venous blood serum and plasma, https://www.iso.org/standard/74605.html

Ghini V, Abuja PM, Polasek O et al (2022) Impact of the pre-examination phase on multicenter metabolomic studies. New Biotechnol 68:37–47

Article  CAS  Google Scholar 

Khadka M, Todor A, Maner-Smith KM et al (2019) The effect of anticoagulants, temperature, and time on the human plasma metabolome and lipidome from healthy donors as determined by liquid chromatography-mass spectrometry. Biomolecules 9:200

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pang Z, Chong J, Zhou G et al (2021) MetaboAnalyst 5.0: narrowing the gap between raw spectra and functional insights. Nucleic Acids Res 49:W388–W396

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gil-De-La-Fuente A, Godzien J, Saugar S et al (2019) CEU Mass Mediator 3.0: a metabolite annotation tool. J Proteome Res 18:797–802

Article  CAS  PubMed  Google Scholar 

Drouin N, Pezzatti J, Gagnebin Y et al (2018) Effective mobility as a robust criterion for compound annotation and identification in metabolomics: toward a mobility-based library. Anal Chim Acta 1032:178–187

Article  CAS  PubMed  Google Scholar 

Martínez-Sena T, Luongo G, Sanjuan-Herráez D et al (2019) Monitoring of system conditioning after blank injections in untargeted UPLC-MS metabolomic analysis. Sci Rep 9:1–9

Article  Google Scholar 

Boccard J, González-Ruiz V, Codesido S, et al (2020) Mass spectrometry metabolomic data handling for biomarker discovery. pp 369–388

Google Scholar 

González-Ruiz V, Gagnebin Y, Drouin N et al (2018) ROMANCE: a new software tool to improve data robustness and feature identification in CE-MS metabolomics. Electrophoresis 39:1222–1232

Article  PubMed  Google Scholar 

Reijeng JC, Martens JHPA, Giuliani A et al (2002) Pherogram normalization in capillary electrophoresis and micellar electrokinetic chromatography analyses in cases of sample matrix-induced migration time shifts. J Chromatogr B Analyt Technol Biomed Life Sci 770:45–51

Article  PubMed  Google Scholar 

Schiffman C, Petrick L, Perttula K et al (2019) Filtering procedures for untargeted lc-ms metabolomics data. BMC Bioinformatics 20:1–10

Article  Google Scholar 

Naz S, Vallejo M, García A et al (2014) Method validation strategies involved in non-targeted metabolomics. J Chromatogr A 1353:99–105

Article  CAS  PubMed  Google Scholar 

Thonusin C, IglayReger HB, Soni T et al (2017) Evaluation of intensity drift correction strategies using MetaboDrift, a normalization tool for multi-batch metabolomics data. J Chromatogr A 1523:265–274

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sumner LW, Amberg A, Barrett D et al (2007) Proposed minimum reporting standards for chemical analysis. Metabolomics 3:211–221

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schymanski EL, Jeon J, Gulde R et al (2014) Identifying small molecules via high resolution mass spectrometry: communicating confidence. Environ Sci Technol 48:2097–2098

Article  CAS  PubMed  Google Scholar 

Xue J, Domingo-Almenara X, Guijas C et al (2020) Enhanced in-source fragmentation annotation enables novel data independent acquisition and autonomous METLIN molecular identification. Anal Chem 92:6051–6059

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mamani-Huanca M, Gradillas A, Gil De La Fuente A et al (2020) Unveiling the fragmentation mechanisms of modified amino acids as the key for their targeted identification. Anal Chem 92:4848–4857

Article  CAS  PubMed  Google Scholar 

Mamani-Huanca M, Gradillas A, López-Gonzálvez Á et al (2022) In-source fragmentation for the identification of compounds by CE-ESI-TOF in human plasma. L-Proline as case study. Methods Mol Biol 2531:185–202

Article  CAS  PubMed  Google Scholar 

Mamani-Huanca M, Gradillas A, López-Gonzálvez Á et al (2020) Unraveling the Cyclization of l-Argininosuccinic acid in biological samples: a study via mass spectrometry and NMR spectroscopy. Anal Chem 92:12891–12899

Article  CAS  PubMed  Google Scholar 

Giera M, Yanes O, Siuzdak G (2022) Metabolite discovery: biochemistry’s scientific driver. Cell Metab 34:21–34

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fernández-de-las-Peñas C, Palacios-Ceña D, Gómez-Mayordomo V et al (2021) Defining post-COVID symptoms (Post-Acute COVID, Long COVID, Persistent Post-COVID): an integrative classification. Int J Environ Res Public Health 18:2621

Article  PubMed  PubMed Central  Google Scholar 

Munipalli B, Seim L, Dawson NL et al (2022) Post-acute sequelae of COVID-19 (PASC): a meta-narrative review of pathophysiology, prevalence, and management. SN Compr Clin Med 4:1–14

Article  Google Scholar 

Guntur VP, Nemkov T, de Boer E et al (2022) Signatures of mitochondrial dysfunction and impaired fatty acid metabolism in plasma of patients with Post-Acute Sequelae of COVID-19 (PASC). Metabolites 12:1026

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kuligowski J, Sánchez-Illana Á, Sanjuán-Herráez D et al (2015) Intra-batch effect correction in liquid chromatography-mass spectrometry using quality control samples and support vector regression (QC-SVRC). Analyst 140:7810–7817

Article  CAS  PubMed  Google Scholar 

Song JW, Lam SM, Fan X et al (2020) Omics-driven systems interrogation of metabolic dysregulation in COVID-19 pathogenesis. Cell Metab 32:188–202.e5

Article  CAS  PubMed  PubMed Central  Google Scholar 

Barberis E, Timo S, Amede E et al (2020) Large-scale plasma analysis revealed new mechanisms and molecules associated with the host response to SARS-CoV-2. Int J Mol Sci 21:8623

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang H, Zheng X, Liu B et al (2021) Aspartate metabolism facilitates IL-1β production in inflammatory macrophages. Front Immunol 12:753092

Comments (0)

No login
gif