Analysis and Visualization of Multiple Hi-C and Micro-C Data with CustardPy

Pombo A, Dillon N (2015) Three-dimensional genome architecture: players and mechanisms. Nat Rev Mol Cell Biol 16(4):245–257

Article  CAS  PubMed  Google Scholar 

Alonso-Gil D, Losada A (2023) NIPBL and cohesin: new take on a classic tale. Trends Cell Biol 33(10):860–871

Article  CAS  PubMed  Google Scholar 

Belton JM, McCord RP, Gibcus JH et al (2012) Hi-C: a comprehensive technique to capture the conformation of genomes. Methods 58:268–276

Article  CAS  PubMed  Google Scholar 

Hsieh THS, Weiner A, Lajoie B et al (2015) Mapping nucleosome resolution chromosome folding in yeast by micro-C. Cell 162:108–119

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jerković I, Cavalli G (2021) Understanding 3D genome organization by multidisciplinary methods. Nat Rev Mol Cell Biol 22(8):511–528

Article  PubMed  Google Scholar 

Zhang Y, Boninsegna L, Yang M et al (2023) Computational methods for analysing multiscale 3D genome organization. Nat Rev Genet 25(2):123–141

Article  PubMed  PubMed Central  Google Scholar 

Yu M, Ren B (2017) The three-dimensional organization of mammalian genomes. Annu Rev Cell Dev Biol 33:265–289

Article  CAS  PubMed  PubMed Central  Google Scholar 

Durand NC, Shamim MS, Machol I et al (2016) Juicer provides a one-click system for analyzing loop-resolution Hi-C experiments. Cell Syst 3:95–98

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wingett S, Ewels P, Furlan-Magaril M et al (2015) HiCUP: pipeline for mapping and processing Hi-C data. F1000Res 4:1310

Article  PubMed  PubMed Central  Google Scholar 

Servant N, Varoquaux N, Lajoie BR et al (2015) HiC-Pro: an optimized and flexible pipeline for Hi-C data processing. Genome Biol 16:259

Article  PubMed  PubMed Central  Google Scholar 

Serra F, Baù D, Goodstadt M et al (2017) Automatic analysis and 3D-modelling of Hi-C data using TADbit reveals structural features of the fly chromatin colors. PLoS Comput Biol 13:e1005665

Article  PubMed  PubMed Central  Google Scholar 

Abdennur N, Mirny LA (2020) Cooler: scalable storage for Hi-C data and other genomically labeled arrays. Bioinformatics 36:311–316

Article  CAS  PubMed  Google Scholar 

Heinz S, Benner C, Spann N et al (2010) Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell 38:576–589

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ramírez F, Bhardwaj V, Arrigoni L et al (2018) High-resolution TADs reveal DNA sequences underlying genome organization in flies. Nat Commun 9:189

Article  PubMed  PubMed Central  Google Scholar 

Wolff J, Bhardwaj V, Nothjunge S et al (2018) Galaxy HiCExplorer: a web server for reproducible Hi-C data analysis, quality control and visualization. Nucleic Acids Res 46:W11–W16

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shao Z, Zhang Y, Yuan GC et al (2012) MAnorm: a robust model for quantitative comparison of ChIP-Seq data sets. Genome Biol 13:R16

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wolff J, Backofen R, Grüning B (2022) Loop detection using Hi-C data with HiCExplorer. Gigascience 11:giac061

Article  PubMed  PubMed Central  Google Scholar 

Durand NC, Robinson JT, Shamim MS et al (2016) Juicebox provides a visualization system for Hi-C contact maps with unlimited zoom. Cell Syst 3:99–101

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kerpedjiev P, Abdennur N, Lekschas F et al (2018) HiGlass: web-based visual exploration and analysis of genome interaction maps. Genome Biol 19:125

Article  PubMed  PubMed Central  Google Scholar 

Xu W, Zhong Q, Lin D et al (2021) CoolBox: a flexible toolkit for visual analysis of genomics data. BMC Bioinformatics 22:489

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu Y, Nanni L, Sungalee S et al (2021) Systematic inference and comparison of multi-scale chromatin sub-compartments connects spatial organization to cell phenotypes. Nat Commun 12:2439

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zufferey M, Tavernari D, Oricchio E et al (2018) Comparison of computational methods for the identification of topologically associating domains. Genome Biol 19:217

Article  CAS  PubMed  PubMed Central  Google Scholar 

Salameh TJ, Wang X, Song F et al (2020) A supervised learning framework for chromatin loop detection in genome-wide contact maps. Nat Commun 11:3428

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nakato R, Sakata T, Wang J et al (2023) Context-dependent perturbations in chromatin folding and the transcriptome by cohesin and related factors. Nat Commun 14:5647

Article  CAS  PubMed  PubMed Central  Google Scholar 

Saha P, Uminski P, Beltre A et al (2018) Evaluation of docker containers for scientific workloads in the cloud. In: ACM international conference proceeding series. Association for Computing Machinery

Google Scholar 

Kurtzer GM, Sochat V, Bauer MW (2017) Singularity: scientific containers for mobility of compute. PLoS One 12:e0177459

Article  PubMed  PubMed Central  Google Scholar 

Rao SSP, Huntley MH, Durand NC et al (2014) A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159:1665–1680

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang J, Nakato R (2022) HiC1Dmetrics: framework to extract various one-dimensional features from chromosome structure data. Brief Bioinform 23:bbab509

Article  PubMed  Google Scholar 

Crane E, Bian Q, McCord RP et al (2015) Condensin-driven remodelling of X chromosome topology during dosage compensation. Nature 523:240–244

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dixon JR, Jung I, Selvaraj S et al (2015) Chromatin architecture reorganization during stem cell differentiation. Nature 518:331–336

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dixon JR, Selvaraj S, Yue F et al (2012) Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485:376–380

Article  CAS  PubMed

Comments (0)

No login
gif