Serum-Free and Protein-Free Media for the Cultivation of Recombinant Chinese Hamster Ovary (CHO) Cell Lines

Walsh G, Walsh E (2022) Biopharmaceutical benchmarks 2022. Nat Biotechnol 40(12):1722–1760. https://doi.org/10.1038/s41587-022-01582-x

Article  PubMed  PubMed Central  CAS  Google Scholar 

Kelley B, Kiss R, Laird M (2018) In: Kiss B, Gottschalk U, Pohlscheidt M (eds) New bioprocessing strategies: development and manufacturing of recombinant antibodies and proteins. Springer, pp 443–462

Chapter  Google Scholar 

Gstraunthaler G (2003) Alternatives to the use of fetal bovine serum: serum-free cell culture. ALTEX 20(4):275–281

PubMed  Google Scholar 

Jayme DW, Smith SR (2000) Media formulation options and manufacturing process controls to safeguard against introduction of animal origin contaminants in animal cell culture. Cytotechnology 33(1–3):27–36. https://doi.org/10.1023/A:1008133717035

Article  PubMed  PubMed Central  CAS  Google Scholar 

Zhang Q, Mi C, Wang T (2023) Effects and mechanism of small molecule additives on recombinant protein in CHO cells. Appl Microbiol Biotechnol 107(9):2771–2781. https://doi.org/10.1007/s00253-023-12486-4

Article  PubMed  CAS  Google Scholar 

Xu P, Xu S, He C, Khetan A (2020) Applications of small molecules in modulating productivity and product quality of recombinant proteins produced using cell cultures. Biotechnol Adv 43:107577. https://doi.org/10.1016/j.biotechadv.2020.107577

Article  PubMed  CAS  Google Scholar 

Park JH, Noh SM, Woo JR, Kim JW, Lee GM (2016) Valeric acid induces cell cycle arrest at G1 phase in CHO cell cultures and improves recombinant antibody productivity. Biotechnol J 11(4):487–496. https://doi.org/10.1002/biot.201500327

Article  PubMed  CAS  Google Scholar 

Damiani R, Almeida BE, Oliveira JE, Bartolini P, Ribela MT (2013) Enhancement of human thyrotropin synthesis by sodium butyrate addition to serum-free CHO cell culture. Appl Biochem Biotechnol 171(7):1658–1672. https://doi.org/10.1007/s12010-013-0467-9

Article  PubMed  CAS  Google Scholar 

Kim BG, Park HW (2016) High zinc ion supplementation of more than 30 μM can increase monoclonal antibody production in recombinant Chinese hamster ovary DG44 cell culture. Appl Microbiol Biotechnol 100(5):2163–2170. https://doi.org/10.1007/s00253-015-7096-x

Article  PubMed  CAS  Google Scholar 

Yuk IH, Russell S, Tang Y, Hsu WT, Mauger JB, Aulakh RP, Luo J, Gawlitzek M, Joly JC (2015) Effects of copper on CHO cells: cellular requirements and product quality considerations. Biotechnol Prog 31(1):226–238. https://doi.org/10.1002/btpr.2004

Article  PubMed  CAS  Google Scholar 

Grainger RK, James DC (2013) CHO cell line specific prediction and control of recombinant monoclonal antibody N-glycosylation. Biotechnol Bioeng 110(11):2970–2983. https://doi.org/10.1002/bit.24959

Article  PubMed  CAS  Google Scholar 

Capella Roca B, Alarcón Miguez A, Keenan J, Suda S, Barron N, O’Gorman D, Doolan P, Clynes M (2019) Zinc supplementation increases protein titer of recombinant CHO cells. Cytotechnology 71(5):915–924. https://doi.org/10.1007/s10616-019-00334-1

Article  PubMed  PubMed Central  CAS  Google Scholar 

Du Q, Zhang X, Wang T, Wang X (2022) Effects and mechanisms of animal-free hydrolysates on recombination protein yields in CHO cells. Appl Microbiol Biotechnol 106(22):7387–7396. https://doi.org/10.1007/s00253-022-12229-x

Article  PubMed  CAS  Google Scholar 

Chevallier V, Andersen MR, Malphettes L (2020) Oxidative stress-alleviating strategies to improve recombinant protein production in CHO cells. Biotechnol Bioeng 117(4):1172–1186. https://doi.org/10.1002/bit.27247

Article  PubMed  CAS  Google Scholar 

Chandrawanshi V, Kulkarni R, Prabhu A, Mehra S (2020) Enhancing titers and productivity of rCHO clones with a combination of an optimized fed-batch process and ER-stress adaptation. J Biotechnol 311:49–58. https://doi.org/10.1016/j.jbiotec.2020.02.008

Article  PubMed  CAS  Google Scholar 

Eberhardy SR, Radzniak L, Liu Z (2009) Iron (III) citrate inhibits polyethylenimine-mediated transient transfection of Chinese hamster ovary cells in serum-free medium. Cytotechnology 60(1–3):1. https://doi.org/10.1007/s10616-009-9198-8

Article  PubMed  PubMed Central  CAS  Google Scholar 

Capella Roca B, Lao NT, Clynes M, Doolan P (2020) Investigation and circumvention of transfection inhibition by ferric ammonium citrate in serum-free media for Chinese hamster ovary cells. Biotechnol Prog 36(3):e2954. https://doi.org/10.1002/btpr.2954

Article  PubMed  CAS  Google Scholar 

Comments (0)

No login
gif