Deep dive into intravascular coronary imaging in calcified lesions

Kashiyama T, Okamura A, Koyama Y, et al. Comparison between tip-detection method and retrograde approach for chronic total occlusion percutaneous coronary intervention. Cardiovasc Interv Ther. 2024. https://doi.org/10.1007/s12928-024-01061-x.

Article  PubMed  Google Scholar 

Ogawa T, Sakakura K, Sumitsuji S, et al. Clinical expert consensus document on bailout algorithms for complications in percutaneous coronary intervention from the Japanese association of cardiovascular intervention and therapeutics. Cardiovasc Interv Ther. 2024. https://doi.org/10.1007/s12928-024-01044-y.

Article  PubMed  PubMed Central  Google Scholar 

Seguchi M, Sakakura K, Taniguchi Y, Fujita H. Current situation and overview of resorbable magnesium scaffolds: a perspective for overcoming the remaining issues of polymeric bioresorbable scaffold. Cardiovasc Interv Ther. 2024. https://doi.org/10.1007/s12928-024-01070-w.

Article  PubMed  Google Scholar 

Nakamura M, Yaku H, Ako J, et al. JCS/JSCVS 2018 guideline on revascularization of stable coronary artery disease. Circ J. 2022;86:477–588.

Article  PubMed  Google Scholar 

Lawton JS, Tamis-Holland JE, Writing Committee M, et al. 2021 ACC/AHA/SCAI guideline for coronary artery revascularization: a report of the American college of cardiology/American heart association joint committee on clinical practice guidelines. J Am Coll Cardiol. 2022;79:e21–129.

Article  PubMed  Google Scholar 

Saito Y, Kobayashi Y, Fujii K, et al. CVIT 2023 clinical expert consensus document on intravascular ultrasound. Cardiovasc Interv Ther. 2024;39:1–14.

Article  PubMed  Google Scholar 

Sonoda S, Hibi K, Okura H, et al. Current clinical use of intravascular ultrasound imaging to guide percutaneous coronary interventions (update). Cardiovasc Interv Ther. 2023;38:1–7.

Article  PubMed  Google Scholar 

Jinnouchi H, Sato Y, Sakamoto A, et al. Calcium deposition within coronary atherosclerotic lesion: implications for plaque stability. Atherosclerosis. 2020;306:85–95.

Article  CAS  PubMed  Google Scholar 

Kockx MM, De Meyer GR, Muhring J, Jacob W, Bult H, Herman AG. Apoptosis and related proteins in different stages of human atherosclerotic plaques. Circulation. 1998;97:2307–15.

Article  CAS  PubMed  Google Scholar 

Mori H, Torii S, Kutyna M, Sakamoto A, Finn AV, Virmani R. Coronary artery calcification and its progression: what does it really mean? JACC Cardiovasc Imaging. 2018;11:127–42.

Article  PubMed  Google Scholar 

Otsuka F, Sakakura K, Yahagi K, Joner M, Virmani R. Has our understanding of calcification in human coronary atherosclerosis progressed? Arterioscler Thromb Vasc Biol. 2014;34:724–36.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ehara S, Kobayashi Y, Yoshiyama M, et al. Spotty calcification typifies the culprit plaque in patients with acute myocardial infarction: an intravascular ultrasound study. Circulation. 2004;110:3424–9.

Article  PubMed  Google Scholar 

Mizukoshi M, Kubo T, Takarada S, et al. Coronary superficial and spotty calcium deposits in culprit coronary lesions of acute coronary syndrome as determined by optical coherence tomography. Am J Cardiol. 2013;112:34–40.

Article  CAS  PubMed  Google Scholar 

Torii S, Sato Y, Otsuka F, et al. Eruptive calcified nodules as a potential mechanism of acute coronary thrombosis and sudden death. J Am Coll Cardiol. 2021;77:1599–611.

Article  PubMed  Google Scholar 

Ijichi T, Nakazawa G, Torii S, et al. Evaluation of coronary arterial calcification—ex-vivo assessment by optical frequency domain imaging. Atherosclerosis. 2015;243:242–7.

Article  CAS  PubMed  Google Scholar 

Jansz TT, van Reekum FE, Ozyilmaz A, et al. Coronary artery calcification in hemodialysis and peritoneal dialysis. Am J Nephrol. 2018;48:369–77.

Article  CAS  PubMed  Google Scholar 

Raggi P, Boulay A, Chasan-Taber S, et al. Cardiac calcification in adult hemodialysis patients. A link between end-stage renal disease and cardiovascular disease? J Am Coll Cardiol. 2002;39:695–701.

Article  PubMed  Google Scholar 

Jinnouchi H, Sato Y, Bhoite RR, et al. Intravascular imaging and histological correlates of medial and intimal calcification in peripheral artery disease. EuroIntervention. 2021;17:e688–98.

Article  PubMed  PubMed Central  Google Scholar 

Virmani R, Kolodgie FD, Burke AP, Farb A, Schwartz SM. Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol. 2000;20:1262–75.

Article  CAS  PubMed  Google Scholar 

Lee T, Mintz GS, Matsumura M, et al. Prevalence, predictors, and clinical presentation of a calcified nodule as assessed by optical coherence tomography. JACC Cardiovasc Imaging. 2017;10:883–91.

Article  PubMed  Google Scholar 

Morofuji T, Kuramitsu S, Shinozaki T, et al. Clinical impact of calcified nodule in patients with heavily calcified lesions requiring rotational atherectomy. Catheter Cardiovasc Interv. 2021;97:10–9.

Article  PubMed  Google Scholar 

Yahagi K, Kolodgie FD, Otsuka F, et al. Pathophysiology of native coronary, vein graft, and in-stent atherosclerosis. Nat Rev Cardiol. 2016;13:79–98.

Article  CAS  PubMed  Google Scholar 

Jinnouchi H, Sakakura K, Taniguchi Y, et al. Clinical outcomes and unique restenosis of calcified nodule in heavily calcified coronary artery. J Atheroscler Thromb. 2023;30:649–62.

Article  PubMed  Google Scholar 

Jinnouchi H, Sakakura K, Taniguchi Y, et al. Clinical impact of in-stent calcification in coronary arteries: optical coherence tomography study. Am J Cardiol. 2024;214:115–24.

Article  CAS  PubMed  Google Scholar 

Lee JB, Mintz GS, Lisauskas JB, et al. Histopathologic validation of the intravascular ultrasound diagnosis of calcified coronary artery nodules. Am J Cardiol. 2011;108:1547–51.

Article  PubMed  Google Scholar 

Tearney GJ, Regar E, Akasaka T, et al. Consensus standards for acquisition, measurement, and reporting of intravascular optical coherence tomography studies: a report from the international working group for intravascular optical coherence tomography standardization and validation. J Am Coll Cardiol. 2012;59:1058–72.

Article  PubMed  Google Scholar 

Sato T, Matsumura M, Yamamoto K, et al. Impact of eruptive vs noneruptive calcified nodule morphology on acute and long-term outcomes after stenting. JACC Cardiovasc Interv. 2023;16:1024–35.

Article  PubMed  Google Scholar 

Sugane H, Kataoka Y, Otsuka F, et al. Cardiac outcomes in patients with acute coronary syndrome attributable to calcified nodule. Atherosclerosis. 2021;318:70–5.

Article  CAS  PubMed  Google Scholar 

Hamana T, Kawamori H, Toba T, et al. Predictors of target lesion revascularisation after drug-eluting stent implantation for calcified nodules: an optical coherence tomography study. EuroIntervention. 2023;19:e123–33.

Article  PubMed  PubMed Central  Google Scholar 

Mori H, Finn AV, Atkinson JB, Lutter C, Narula J, Virmani R. Calcified nodule: an early and late cause of in-stent failure. JACC Cardiovasc Interv. 2016;9:e125–6.

Article  PubMed  Google Scholar 

Higashino N, Ishihara T, Iida O, et al. Very early progression of an in-stent calcified nodule 2 weeks after drug-eluting stent implantation in the calcified lesion. CJC Open. 2022;4:820–2.

Article  PubMed  PubMed Central  Google Scholar 

Murakami T, Kojima K, Jinnouchi H, Takenoya M. Acute stent thrombosis following reprotrusion of a calcified nodule in the left main coronary artery. Catheter Cardiovasc Interv. 2024. https://doi.org/10.1002/ccd.31305.

Article  PubMed  Google Scholar 

Murakami T, Kojima K, Jinnouchi H, Takenoya M. In-stent restenosis caused by a reprotruding calcified nodule and stent fracture in the hinged coronary artery. Catheter Cardiovasc Interv. 2024;104:511–5.

Comments (0)

No login
gif