McDonald-McGinn DM, Zackai EH, Low D. What’s in a name? The 22q11.2 deletion. Am J Med Genet. 1997;72:247–9.
Article PubMed CAS Google Scholar
Grati FR, Molina Gomes D, Ferreira JCPB, Dupont C, Alesi V, Gouas L, et al. Prevalence of recurrent pathogenic microdeletions and microduplications in over 9500 pregnancies. Prenat Diagn. 2015;35:801–9.
Tan TY, Collins A, James PA, McGillivray G, Stark Z, Gordon CT, et al. Phenotypic variability of distal 22q11.2 copy number abnormalities. Am J Med Genet A. 2011;155A:1623–33.
Rozas MF, Benavides F, León L, Repetto GM. Association between phenotype and deletion size in 22q11.2 microdeletion syndrome: systematic review and meta-analysis. Orphanet J Rare Dis. 2019;14:195.
Article PubMed PubMed Central Google Scholar
Gur RE, Yi JJ, McDonald-McGinn DM, Tang SX, Calkins ME, Whinna D, et al. Neurocognitive development in 22q11.2 deletion syndrome: comparison with youth having developmental delay and medical comorbidities. Mol Psychiatry. 2014;19:1205–11.
Article PubMed PubMed Central CAS Google Scholar
Swillen A, Moss E, Duijff S. Neurodevelopmental outcome in 22q11.2 deletion syndrome and management. Am J Med Genet A. 2018;176:2160–6.
Article PubMed PubMed Central CAS Google Scholar
Eliez S, Schmitt JE, White CD, Reiss AL. Children and adolescents with velocardiofacial syndrome: a volumetric MRI study. Am J Psychiatry. 2000;157:409–15.
Article PubMed CAS Google Scholar
Campbell LE, Daly E, Toal F, Stevens A, Azuma R, Catani M, et al. Brain and behaviour in children with 22q11.2 deletion syndrome: a volumetric and voxel-based morphometry MRI study. Brain J Neurol. 2006;129:1218–28.
Gudbrandsen M, Daly E, Murphy CM, Blackmore CE, Rogdaki M, Mann C, et al. Brain morphometry in 22q11.2 deletion syndrome: an exploration of differences in cortical thickness, surface area, and their contribution to cortical volume. Sci Rep. 2020;10:18845.
Article PubMed PubMed Central CAS Google Scholar
Gudbrandsen M, Mann C, Bletsch A, Daly E, Murphy CM, Stoencheva V, et al. Patterns of Cortical Folding Associated with autistic symptoms in carriers and noncarriers of the 22q11.2 Microdeletion. Cereb Cortex N Y N 1991. 2020;30:5281–92.
Seitz-Holland J, Lyons M, Kushan L, Lin A, Villalon-Reina JE, Cho KIK et al. Opposing white matter microstructure abnormalities in 22q11.2 deletion and duplication carriers. Transl Psychiatry [Internet]. 2021 [cited 2024 Mar 25];11:1–11. Available from: https://www.nature.com/articles/s41398-021-01703-1
Licht DJ, Shera DM, Clancy RR, Wernovsky G, Montenegro LM, Nicolson SC, et al. Brain maturation is delayed in infants with complex congenital heart defects. J Thorac Cardiovasc Surg. 2009;137:529–36. discussion 536–537.
Article PubMed PubMed Central Google Scholar
Kelly CJ, Makropoulos A, Cordero-Grande L, Hutter J, Price A, Hughes E et al. Impaired development of the cerebral cortex in infants with congenital heart disease is correlated to reduced cerebral oxygen delivery. Sci Rep [Internet]. 2017 [cited 2021 Sep 21];7:15088. Available from: http://www.nature.com/articles/s41598-017-14939-z
Kelly CJ, Christiaens D, Batalle D, Makropoulos A, Cordero-Grande L, Steinweg JK et al. Abnormal Microstructural Development of the Cerebral Cortex in Neonates With Congenital Heart Disease Is Associated With Impaired Cerebral Oxygen Delivery. J Am Heart Assoc Cardiovasc Cerebrovasc Dis [Internet]. 2019 [cited 2021 Apr 13];8. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6474935/
Cromb D, Uus A, Van Poppel MPM, Steinweg JK, Bonthrone AF, Maggioni A et al. Total and Regional Brain volumes in fetuses with congenital heart disease. J Magn Reson Imaging JMRI. 2023.
Racedo SE, McDonald-McGinn DM, Chung JH, Goldmuntz E, Zackai E, Emanuel BS, et al. Mouse and human CRKL is dosage sensitive for cardiac outflow tract formation. Am J Hum Genet. 2015;96:235–44.
Article PubMed PubMed Central CAS Google Scholar
Xu Y-J, Chen S, Zhang J, Fang S-H, Guo Q-Q, Wang J, et al. Novel TBX1 loss-of-function mutation causes isolated conotruncal heart defects in Chinese patients without 22q11.2 deletion. BMC Med Genet. 2014;15:78.
Article PubMed PubMed Central Google Scholar
Limperopoulos T, Wayne, McElhinney Doff B, Newburger Jane W, Brown David W, Robertson Richard L et al. Brain Volume and Metabolism in Fetuses With Congenital Heart Disease. Circulation [Internet]. 2010 [cited 2020 Oct 13];121:26–33. Available from: https://www.ahajournals.org/doi/https://doi.org/10.1161/circulationaha.109.865568
Clouchoux C, Guizard N, Evans AC, du Plessis AJ, Limperopoulos C. Normative fetal brain growth by quantitative in vivo magnetic resonance imaging. Am J Obstet Gynecol. 2012;206:e1731–8.
von Rhein M, Buchmann A, Hagmann C, Huber R, Klaver P, Knirsch W, et al. Brain volumes predict neurodevelopment in adolescents after surgery for congenital heart disease. Brain J Neurol. 2014;137:268–76.
Bulas D, Egloff A. Benefits and risks of MRI in pregnancy. Semin Perinatol. 2013;37:301–4.
Chartier AL, Bouvier MJ, McPherson DR, Stepenosky JE, Taysom DA, Marks RM. The safety of maternal and fetal MRI at 3 T. AJR Am J Roentgenol. 2019;213:1170–3.
Kuklisova-Murgasova M, Quaghebeur G, Rutherford MA, Hajnal JV, Schnabel JA. Reconstruction of fetal brain MRI with intensity matching and complete outlier removal. Med Image Anal [Internet]. 2012 [cited 2021 Jun 15];16:1550–64. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4067058/
Uus A, Grigorescu I, van Poppel M, Hughes E, Steinweg J, Roberts T et al. 3D UNet with GAN discriminator for robust localisation of the fetal brain and trunk in MRI with partial coverage of the fetal body [Internet]. Bioengineering; 2021 Jun. Available from: https://doi.org/10.1101/2021.06.23.449574
Uus AU, Egloff Collado A, Roberts TA, Hajnal JV, Rutherford MA, Deprez M. Retrospective motion correction in foetal MRI for clinical applications: existing methods, applications and integration into clinical practice. Br J Radiol [Internet]. 2023 [cited 2023 Sep 22];96:20220071. Available from: https://www.birpublications.org/doi/full/https://doi.org/10.1259/bjr.20220071
Uus AU, Kyriakopoulou V, Makropoulos A, Fukami-Gartner A, Cromb D, Davidson A et al. BOUNTI: Brain vOlumetry and aUtomated parcellatioN for 3D feTal MRI. eLife [Internet]. 2023 [cited 2024 Nov 4];12. Available from: https://elifesciences.org/reviewed-preprints/88818
Jenkinson M, Beckmann CF, Behrens TEJ, Woolrich MW, Smith SM. FSL NeuroImage. 2012;62:782–90.
Seabold S, Perktold J, Statsmodels. Econometric and Statistical Modeling with Python. Proc 9th Python Sci Conf. 2010;2010.
Lenhard W, Lenhard A. Computation of Effect Sizes [Internet]. Comput. Eff. Sizes. 2017 [cited 2024 Nov 27]. Available from: http://www.psychometrica.de/effect_size.html
Bassett AS, Chow EWC. Schizophrenia and 22q11.2 deletion syndrome. Curr Psychiatry Rep. 2008;10:148–57.
Article PubMed PubMed Central Google Scholar
Peyvandi S, Latal B, Miller SP, McQuillen PS. The neonatal brain in critical congenital heart disease: insights and future directions. NeuroImage. 2019;185:776–82.
Bonthrone AF, Kelly CJ, Ng IHX, Counsell SJ. MRI studies of brain size and growth in individuals with congenital heart disease. Transl Pediatr [Internet]. 2021 [cited 2022 Apr 12];10:2171181–2181. Available from: https://tp.amegroups.com/article/view/56444
Kikinis Z, Cho KIK, Coman IL, Radoeva PD, Bouix S, Tang Y, et al. Abnormalities in brain white matter in adolescents with 22q11.2 deletion syndrome and psychotic symptoms. Brain Imaging Behav. 2017;11:1353–64.
Article PubMed PubMed Central Google Scholar
Villalón-Reina JE, Martínez K, Qu X, Ching CRK, Nir TM, Kothapalli D, et al. Altered white matter microstructure in 22q11.2 deletion syndrome: a multisite diffusion tensor imaging study. Mol Psychiatry. 2020;25:2818–31.
Budel S, Padukkavidana T, Liu BP, Feng Z, Hu F, Johnson S, et al. Genetic variants of Nogo-66 receptor with possible association to schizophrenia block myelin inhibition of axon growth. J Neurosci off J Soc Neurosci. 2008;28:13161–72.
Wang C, Aleksic B, Ozaki N. Glia-related genes and their contribution to schizophrenia. Psychiatry Clin Neurosci. 2015;69:448–61.
Verdura E, Rodríguez-Palmero A, Vélez-Santamaria V, Planas-Serra L, de la Calle I, Raspall-Chaure M, et al. Biallelic PI4KA variants cause a novel neurodevelopmental syndrome with hypomyelinating leukodystrophy. Brain J Neurol. 2021;144:2659–69.
Phillips OR, Nuechterlein KH, Asarnow RF, Clark KA, Cabeen R, Yang Y, et al. Mapping corticocortical structural integrity in schizophrenia and effects of genetic liability. Biol Psychiatry. 2011;70:680–9.
Yi JJ, Tang SX, McDonald-McGinn DM, Calkins ME, Whinna DA, Souders MC, et al. Contribution of congenital heart disease to neuropsychiatric outcome in school-age children with 22q11.2 deletion syndrome. Am J Med Genet Part B Neuropsychiatr Genet off Publ Int Soc Psychiatr Genet. 2014;165B:137–47.
Bagautdinova J, Zöller D, Schaer M, Padula MC, Mancini V, Schneider M et al. Altered cortical thickness development in 22q11.2 deletion syndrome and association with psychotic symptoms. Mol Psychiatry [Internet]. 2021 [cited 2024 Nov 27];26:7671–8. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8873018/
Schmitt JE, Vandekar S, Yi J, Calkins ME, Ruparel K, Roalf DR, et al. Aberrant cortical morphometry in the 22q11.2 deletion syndrome. Biol Psychiatry. 2015;78:135–43.
Article PubMed CAS Google Scholar
Sun D, Ching CRK, Lin A, Forsyth JK, Kushan L, Vajdi A, et al. Large-scale mapping of cortical alterations in 22q11.2 deletion syndrome: convergence with idiopathic psychosis and effects of deletion size. Mol Psychiatry. 2020;25:1822–34.
Comments (0)