Identification of STAT3 and MYC as critical ferroptosis-related biomarkers in septic cardiomyopathy: a bioinformatics and experimental study

Rudd KE, Johnson SC, Agesa KM et al (2020) Global, regional, and national sepsis incidence and mortality, 1990–2017: analysis for the Global Burden of Disease Study. Lancet 395(10219):200–211. https://doi.org/10.1016/S0140-6736(19)32989-7

Article  PubMed  PubMed Central  Google Scholar 

Carbone F, Liberale L, Preda A et al (2022) Septic cardiomyopathy: from pathophysiology to the clinical setting. Cells 11(18):2833. https://doi.org/10.3390/cells11182833

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lörstad S, Wang Y, Tehrani S et al (2024) Development of an extended cardiovascular SOFA Score component reflecting cardiac dysfunction with improved survival prediction in sepsis: an exploratory analysis in the sepsis and elevated troponin (SET) study. J Intensive Care Med 10(1):8850666241282294. https://doi.org/10.1177/08850666241282294

Article  Google Scholar 

Du Y, Li J, Dai Z et al (2024) Pyruvate kinase M2 sustains cardiac mitochondrial quality surveillance in septic cardiomyopathy by regulating prohibitin 2 abundance via S91 phosphorylation. Cell Mol Life Sci 1(10):254. https://doi.org/10.1007/s00018-024-05253-9

Article  CAS  Google Scholar 

Chen Y, Mao L, Liu S et al (2024) The role of TREM-1 in septic myocardial pyroptosis and septic cardiomyopathy in vitro and in vivo. J Cell Physiol 9(30):e31445. https://doi.org/10.1002/jcp.31445

Article  CAS  Google Scholar 

Li N, Wang W, Zhou H et al (2020) Ferritinophagy-mediated ferroptosis is involved in sepsis-induced cardiac injury. Free Radic Biol Med 160:303–318. https://doi.org/10.1016/j.freeradbiomed.2020.08.009

Article  CAS  PubMed  Google Scholar 

Dixon SJ, Lemberg KM, Lamprecht MR et al (2012) Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149(5):1060–72. https://doi.org/10.1016/j.cell.2012.03.042

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wu X, Wu Q, Wang Y et al (2023) Aqueous-soluble components of sporoderm-removed Ganoderma lucidum spore powder promote ferroptosis in oral squamous cell carcinoma. Chin J Cancer Res 4(30):176-190. https://doi.org/10.21147/j.issn.1000-9604.2023.02.07

Seibt TM, Proneth B, Conrad M (2019) Role of GPX4 in ferroptosis and its pharmacological implication. Free Radic Biol Med. 133:144–152. https://doi.org/10.1016/j.freeradbiomed.2018.09.014

Article  CAS  PubMed  Google Scholar 

Lu C, Tan C, Ouyang H et al (2022) Ferroptosis in intracerebral hemorrhage: a panoramic perspective of the metabolism, mechanism and theranostics. Aging Dis 10(1):1348-1364. https://doi.org/10.14336/AD.2022.01302

Liu Y, Gu W (2022) p53 in ferroptosis regulation: the new weapon for the old guardian. Cell Death Differ. 29(5):895–910. https://doi.org/10.1038/s41418-022-00943-y

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xl L, Zhao GY, Gou R, Cui N (2022) Ferroptosis in sepsis: the mechanism, the role and the therapeutic potential. Front Immunol. 13:956361. https://doi.org/10.3389/fimmu.2022.956361

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xiang J, Chen H, Lin Z, Chen J, Luo L (2023) Identification and experimental validation of ferroptosis-related gene SLC2A3 is involved in rheumatoid arthritis. Eur J Pharmacol. 943:175568. https://doi.org/10.1016/j.ejphar.2023.175568

Article  CAS  PubMed  Google Scholar 

He S, Zhao C, Guo Y et al (2023) Alterations in the gut microbiome and metabolome profiles of septic mice treated with Shen FuHuang formula. Front Microbiol. 14:1111962. https://doi.org/10.3389/fmicb.2023.1111962

Article  PubMed  PubMed Central  Google Scholar 

Wereski R, Kimenai DM, Taggart C et al (2021) Cardiac troponin thresholds and kinetics to differentiate myocardial injury and myocardial infarction. Circulation. 8(17):528–538. https://doi.org/10.1161/CIRCULATIONAHA.121.054302

Article  Google Scholar 

Zhu X, Wang X, Zhu B et al (2022) Disruption of histamine/H1R-STAT3-SLC7A11 axis exacerbates doxorubicin-induced cardiac ferroptosis. Free Radic Biol Med. 11(1):98–114. https://doi.org/10.1016/j.freeradbiomed.2022.09.012

Article  CAS  Google Scholar 

Miotto G, Rossetto M, Di Paolo ML et al (2020) Insight into the mechanism of ferroptosis inhibition by ferrostatin-1. Redox Biol. 1(28):101328. https://doi.org/10.1016/j.redox.2019.101328

Article  CAS  Google Scholar 

Zhang XD, Liu ZY, Wang MS et al (2023) Mechanisms and regulations of ferroptosis. Front Immunol. 10(6):1269451. https://doi.org/10.3389/fimmu.2023.1269451

Article  CAS  Google Scholar 

Ren K, Pei J, Guo Y et al (2023) Regulated necrosis pathways: a potential target for ischemic stroke. Burns Trauma. 11(18):tkad016. https://doi.org/10.1093/burnst/tkad016

Article  PubMed  PubMed Central  Google Scholar 

Li Z, Zhang C, Liu Y et al (2022) Diagnostic and predictive values of ferroptosis-related genes in child sepsis. Front Immunol. 13:881914. https://doi.org/10.3389/fimmu.2022.881914

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dai W, Zheng P, Luo D et al (2022) LPIN1 is a regulatory factor associated with immune response and inflammation in sepsis. Front Immunol. 13:820164. https://doi.org/10.3389/fimmu.2022.820164

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xiao Z, Kong B, Fang J et al (2021) Ferrostatin-1 alleviates lipopolysaccharide-induced cardiac dysfunction. Bioengineered. 12(2):9367–9376. https://doi.org/10.1080/21655979.2021.2001913

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xu J, Ding Y, Shi C et al (2023) Identification of cathepsin B as a therapeutic target for ferroptosis of macrophage after spinal cord injury. Aging Dis. 2023;1(8):421-43. https://doi.org/10.14336/AD.2023.0509

Yang Y, Wang Y, Guo L et al (2022) Interaction between macrophages and ferroptosis. Cell Death Dis. 4(16):355. https://doi.org/10.1038/s41419-022-04775-z

Article  CAS  Google Scholar 

Schmitt A, Xu W, Bucher P et al (2021) Dimethyl fumarate induces ferroptosis and impairs NF-κB/STAT3 signaling in DLBCL. Blood. 138(10):871–884. https://doi.org/10.1182/blood.2020009404

Article  CAS  PubMed  Google Scholar 

Liu Y, Wan Y, Jiang Y, Zhang L, Cheng W (2023) GPX4: the hub of lipid oxidation, ferroptosis, disease and treatment. Biochim Biophys Acta Rev Cancer. 5:188890. https://doi.org/10.1016/j.bbcan.2023.188890

Article  CAS  Google Scholar 

Feng F, He S, Li X, He J, Luo L (2023) Mitochondria-mediated ferroptosis in diseases therapy: from molecular mechanisms to implications. Aging Dis 7(28):714-738. https://doi.org/10.14336/AD.2023.071-7

Ouyang S, Li H, Lou L et al (2022) Inhibition of STAT3-ferroptosis negative regulatory axis suppresses tumor growth and alleviates chemoresistance in gastric cancer. Redox Biol. 52:102317. https://doi.org/10.1016/j.redox.2022.102317

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fang X, Ardehali H, Min J, Wang F (2023) The molecular and metabolic landscape of iron and ferroptosis in cardiovascular disease. Nat Rev Cardiol. 20(1):7–23. https://doi.org/10.1038/s41569-022-00735-4

Article  PubMed  Google Scholar 

Thompson EB (1998) The many roles of c-Myc in apoptosis. Annu Rev Physiol. 60:575–600. https://doi.org/10.1146/annurev.physiol.60.1.575

Article  CAS  PubMed  Google Scholar 

Zhao Y, Wang Y, Miao Z et al (2023) c-Myc protects hepatocellular carcinoma cell from ferroptosis induced by glutamine deprivation via upregulating GOT1 and Nrf2. Mol Biol Rep. 50(8):6627–6641. https://doi.org/10.1007/s11033-023-08495-1

Article  CAS  PubMed  Google Scholar 

Lu C, Cai Y, Liu W et al (2022) Aberrant expression of KDM1A inhibits ferroptosis of lung cancer cells through up-regulating c-Myc. Sci Rep. 12(1):19168. https://doi.org/10.1038/s41598-022-23699-4

Article  CAS 

Comments (0)

No login
gif