CircRNA CDR1AS promotes cardiac ischemia–reperfusion injury in mice by triggering cardiomyocyte autosis

Song R, Dasgupta C, Mulder C, Zhang L (2022) MicroRNA-210 controls mitochondrial metabolism and protects heart function in myocardial infarction. Circulation 145:1140–1153. https://doi.org/10.1161/CIRCULATIONAHA.121.056929

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cuervo AM (2004) Autophagy: in sickness and in health. Trends Cell Biol 14:70–77. https://doi.org/10.1016/j.tcb.2003.12.002

Article  CAS  PubMed  Google Scholar 

Chen Y, Klionsky DJ (2011) The regulation of autophagy—unanswered questions. J Cell Sci 124:161–170. https://doi.org/10.1242/jcs.064576

Article  CAS  PubMed  Google Scholar 

Yorimitsu T, Klionsky DJ (2005) Autophagy: molecular machinery for self-eating. Cell Death Differ 12(Suppl 2):1542–1552. https://doi.org/10.1038/sj.cdd.4401765

Article  CAS  PubMed  Google Scholar 

Gao C, Wang R, Li B, Guo Y, Yin T, Xia Y et al (2020) TXNIP/Redd1 signalling and excessive autophagy: a novel mechanism of myocardial ischaemia/reperfusion injury in mice. Cardiovasc Res 116:645–657. https://doi.org/10.1093/cvr/cvz152

Article  CAS  PubMed  Google Scholar 

Wen L, Cheng X, Fan Q, Chen Z, Luo Z, Xu T et al (2023) TanshinoneIIA inhibits excessive autophagy and protects myocardium against ischemia/reperfusion injury via 14–3-3η/Akt/Beclin1 pathway. Eur J Pharmacol 954:175865. https://doi.org/10.1016/j.ejphar.2023.175865

Article  CAS  PubMed  Google Scholar 

Nah J, Zhai P, Huang CY, Fernández ÁF, Mareedu S, Levine B et al (2020) Upregulation of Rubicon promotes autosis during myocardial ischemia/reperfusion injury. J Clin Invest 130:2978–2991. https://doi.org/10.1172/JCI132366

Article  CAS  PubMed  PubMed Central  Google Scholar 

Saftig P, Klumperman J (2009) Lysosome biogenesis and lysosomal membrane proteins: trafficking meets function. Nat Rev Mol Cell Biol 10:623–635. https://doi.org/10.1038/nrm2745

Article  CAS  PubMed  Google Scholar 

Eskelinen EL (2005) Maturation of autophagic vacuoles in Mammalian cells. Autophagy 1:1–10. https://doi.org/10.4161/auto.1.1.1270

Article  CAS  PubMed  Google Scholar 

Nishino I, Fu J, Tanji K, Yamada T, Shimojo S, Koori T et al (2000) Primary LAMP-2 deficiency causes X-linked vacuolar cardiomyopathy and myopathy (Danon disease). Nature 406:906–910. https://doi.org/10.1038/35022604

Article  CAS  PubMed  Google Scholar 

Zheng W, Chen Q, Liu H, Zeng L, Zhou Y, Liu X et al (2023) SDC1-dependent TGM2 determines radiosensitivity in glioblastoma by coordinating EPG5-mediated fusion of autophagosomes with lysosomes. Autophagy 19:839–857. https://doi.org/10.1080/15548627.2022.2105562

Article  CAS  PubMed  Google Scholar 

Kim YC, Guan KL (2015) mTOR: a pharmacologic target for autophagy regulation. J Clin Invest 125:25–32. https://doi.org/10.1172/JCI73939

Article  PubMed  PubMed Central  Google Scholar 

Qian X, Wang H, Wang Y, Chen J, Guo X, Deng H (2020) Enhanced autophagy in GAB1-deficient vascular endothelial cells is responsible for atherosclerosis progression. Front Physiol 11:559396. https://doi.org/10.3389/fphys.2020.559396

Article  PubMed  Google Scholar 

Long F, Li L, Xie C, Ma M, Wu Z, Lu Z et al (2023) Intergenic CircRNA Circ_0007379 Inhibits Colorectal Cancer Progression by Modulating miR-320a Biogenesis in a KSRP-Dependent Manner. Int J Biol Sci 19:3781–3803. https://doi.org/10.7150/ijbs.85063

Article  CAS  PubMed  PubMed Central  Google Scholar 

Piwecka M, Glažar P, Hernandez-Miranda L R, Memczak S, Wolf S A, Rybak-Wolf A et al (2017) Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function. Science 357(6357):eaam8526. https://doi.org/10.1126/science.aam8526.

Mehta SL, Chokkalla AK, Bathula S, Arruri V, Chelluboina B, Vemuganti R (2023) CDR1as regulates α-synuclein-mediated ischemic brain damage by controlling miR-7 availability. Mol Ther Nucleic Acids 31:57–67. https://doi.org/10.1016/j.omtn.2022.11.022

Article  CAS  PubMed  Google Scholar 

Zhang Y, Sun L, Xuan L, Pan Z, Li K, Liu S et al (2016) Reciprocal changes of circulating long non-coding RNAs ZFAS1 and CDR1AS predict acute myocardial infarction. Sci Rep 6:22384. https://doi.org/10.1038/srep22384

Article  CAS  PubMed  PubMed Central  Google Scholar 

Geng HH, Li R, Su YM, Xiao J, Pan M, Cai XX et al (2016) The circular RNA Cdr1as promotes myocardial infarction by mediating the regulation of miR-7a on its target genes expression. PLoS ONE 11:e0151753. https://doi.org/10.1371/journal.pone.0151753

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shao Y, Li M, Yu Q, Gong M, Wang Y, Yang X et al (2022) CircRNA CDR1as promotes cardiomyocyte apoptosis through activating hippo signaling pathway in diabetic cardiomyopathy. Eur J Pharmacol 922:174915. https://doi.org/10.1016/j.ejphar.2022.174915

Article  CAS  PubMed  Google Scholar 

Cai W, Zhang Y, Su Z (2020) ciRS-7 targeting miR-135a-5p promotes neuropathic pain in CCI rats via inflammation and autophagy. Gene 736:144386. https://doi.org/10.1016/j.gene.2020.144386

Article  CAS  PubMed  Google Scholar 

Meng L, Liu S, Ding P, Chang S, Sang M (2020) Circular RNA ciRS-7 inhibits autophagy of ESCC cells by functioning as miR-1299 sponge to target EGFR signaling. J Cell Biochem 121:1039–1049. https://doi.org/10.1002/jcb.29339

Article  CAS  PubMed  Google Scholar 

Zhou X, Li J, Zhou Y, Yang Z, Yang H, Li D et al (2020) Down-regulated ciRS-7/up-regulated miR-7 axis aggravated cartilage degradation and autophagy defection by PI3K/AKT/mTOR activation mediated by IL-17A in osteoarthritis. Aging (Albany NY) 12: 20163–20183. https://doi.org/10.18632/aging.103731.

Ikeda S, Zablocki D, Sadoshima J (2022) The role of autophagy in death of cardiomyocytes. J Mol Cell Cardiol 165:1–8. https://doi.org/10.1016/j.yjmcc.2021.12.006

Article  CAS  PubMed  Google Scholar 

Nah J, Zablocki D, Sadoshima J (2020) Autosis: a new target to prevent cell death. JACC Basic Transl Sci 5:857–869. https://doi.org/10.1016/j.jacbts.2020.04.014

Article  PubMed  PubMed Central  Google Scholar 

Eskelinen EL (2006) Roles of LAMP-1 and LAMP-2 in lysosome biogenesis and autophagy. Mol Aspects Med 27:495–502. https://doi.org/10.1016/j.mam.2006.08.005

Article  CAS  PubMed  Google Scholar 

Arakawa S, Honda S, Yamaguchi H, Shimizu S (2017) Molecular mechanisms and physiological roles of Atg5/Atg7-independent alternative autophagy. Proc Jpn Acad Ser B Phys Biol Sci 93:378–385. https://doi.org/10.2183/pjab.93.023

Article  CAS  PubMed  PubMed Central  Google Scholar 

Komatsu M, Kageyama S, Ichimura Y (2012) p62/SQSTM1/A170: physiology and pathology. Pharmacol Res 66:457–462. https://doi.org/10.1016/j.phrs.2012.07.004

Article  CAS  PubMed  Google Scholar 

Han H, Zheng S, Lin S (2023) N(7)-methylguanosine (m(7)G) tRNA modification: a novel autophagy modulator in cancer. Autophagy 19:360–362. https://doi.org/10.1080/15548627.2022.2077551

Article  CAS  PubMed  Google Scholar 

Sánchez-Hernández CD, Torres-Alarcón LA, González-Cortés A, Peón AN (2020) Ischemia/reperfusion injury: pathophysiology, current clinical management, and potential preventive approaches. Mediators Inflamm 2020:8405370. https://doi.org/10.1155/2020/8405370

Article  CAS  PubMed  PubMed Central 

Comments (0)

No login
gif