Mediator kinase inhibition drives myometrial stem cell differentiation and the uterine fibroid phenotype through super-enhancer reprogramming

Doherty L, Mutlu L, Sinclair D, Taylor H (2014) Uterine fibroids: clinical manifestations and contemporary management. Reprod Sci 21:1067–1092. https://doi.org/10.1177/1933719114533728

Article  PubMed  Google Scholar 

Stewart EA, Laughlin-Tommaso SK, Catherino WH, Lalitkumar S, Gupta D, Vollenhoven B (2016) Uterine fibroids. Nat Rev Dis Prim 2:16043. https://doi.org/10.1038/nrdp.2016.43

Article  PubMed  Google Scholar 

Bulun SE (2013) Uterine fibroids. N Engl J Med 369:1344–1355. https://doi.org/10.1056/NEJMra1209993

Article  CAS  PubMed  Google Scholar 

Bartels CB, Cayton KC, Chuong FS, Holthouser K, Arian SE, Abraham T, Segars JH (2016) An evidence-based approach to the medical management of fibroids: a systematic review. Clin Obstet Gynecol 59:30–52. https://doi.org/10.1097/grf.0000000000000171

Article  PubMed  Google Scholar 

Giuliani E, As-Sanie S, Marsh EE (2020) Epidemiology and management of uterine fibroids. Int J Gynaecol Obstet 149:3–9. https://doi.org/10.1002/ijgo.13102

Article  PubMed  Google Scholar 

Ciebiera M, Madueke-Laveaux OS, Feduniw S, Ulin M, Spaczyński R, Zgliczyńska M, Bączkowska M, Zarychta E, Łoziński T, Ali M et al (2023) GnRH agonists and antagonists in therapy of symptomatic uterine fibroids – current roles and future perspectives. Expert Opin Pharmacother 24:1799–1809. https://doi.org/10.1080/14656566.2023.2248890

Article  CAS  PubMed  Google Scholar 

Elkafas H, Qiwei Y, Al-Hendy A (2017) Origin of uterine fibroids: conversion of myometrial stem cells to tumor-initiating cells. Semin Reprod Med 35:481–486. https://doi.org/10.1055/s-0037-1607205

Article  PubMed  Google Scholar 

Mäkinen N, Mehine M, Tolvanen J, Kaasinen E, Li Y, Lehtonen HJ, Gentile M, Yan J, Enge M, Taipale M et al (2011) MED12, the mediator complex subunit 12 gene, is mutated at high frequency in uterine leiomyomas. Science 334:252–255. https://doi.org/10.1126/science.1208930

Article  CAS  PubMed  Google Scholar 

Berta DG, Kuisma H, Välimäki N, Räisänen M, Jäntti M, Pasanen A, Karhu A, Kaukomaa J, Taira A, Cajuso T et al (2021) Deficient H2A.Z deposition is associated with genesis of uterine leiomyoma. Nature 596:398–403. https://doi.org/10.1038/s41586-021-03747-1

Article  CAS  PubMed  Google Scholar 

Mehine M, Kaasinen E, Makinen N, Katainen R, Kampjarvi K, Pitkanen E, Heinonen HR, Butzow R, Kilpivaara O, Kuosmanen A et al (2013) Characterization of uterine leiomyomas by whole-genome sequencing. N Engl J Med 369:43–53. https://doi.org/10.1056/NEJMoa1302736

Article  CAS  PubMed  Google Scholar 

Kampjarvi K, Park MJ, Mehine M, Kim NH, Clark AD, Butzow R, Bohling T, Bohm J, Mecklin JP, Jarvinen H et al (2014) Mutations in Exon 1 highlight the role of MED12 in uterine leiomyomas. Hum Mutat 35:1136–1141. https://doi.org/10.1002/humu.22612

Article  CAS  PubMed  Google Scholar 

Mittal P, Shin YH, Yatsenko SA, Castro CA, Surti U, Rajkovic A (2015) Med12 gain-of-function mutation causes leiomyomas and genomic instability. J Clin Invest 125:3280–3284. https://doi.org/10.1172/jci81534

Article  PubMed  PubMed Central  Google Scholar 

Li Y-C, Chao T-C, Kim HJ, Cholko T, Chen S-F, Li G, Snyder L, Nakanishi K, Chang C-e, Murakami K et al (2021) Structure and noncanonical Cdk8 activation mechanism within an Argonaute-containing Mediator kinase module. Sci Adv 7:eabd4484. https://doi.org/10.1126/sciadv.abd4484

Article  CAS  PubMed  PubMed Central  Google Scholar 

Clark AD, Oldenbroek M, Boyer TG (2015) Mediator kinase module and human tumorigenesis. Crit Rev Biochem Mol Biol 50:393–426. https://doi.org/10.3109/10409238.2015.1064854

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schneider EV, Bottcher J, Blaesse M, Neumann L, Huber R, Maskos K (2011) The structure of CDK8/CycC implicates specificity in the CDK/cyclin family and reveals interaction with a deep pocket binder. J Mol Biol 412:251–266. https://doi.org/10.1016/j.jmb.2011.07.020

Article  CAS  PubMed  Google Scholar 

Turunen M, Spaeth JM, Keskitalo S, Park MJ, Kivioja T, Clark AD, Mäkinen N, Gao F, Palin K, Nurkkala H et al (2014) Uterine leiomyoma-linked MED12 mutations disrupt mediator-associated CDK activity. Cell Rep 7:654–660. https://doi.org/10.1016/j.celrep.2014.03.047

Article  CAS  PubMed  PubMed Central  Google Scholar 

Park MJ, Shen H, Spaeth JM, Tolvanen JH, Failor C, Knudtson JF, McLaughlin J, Halder SK, Yang Q, Bulun SE et al (2018) Oncogenic exon 2 mutations in Mediator subunit MED12 disrupt allosteric activation of cyclin C-CDK8/19. J Biol Chem 293:4870–4882. https://doi.org/10.1074/jbc.RA118.001725

Article  CAS  PubMed  PubMed Central  Google Scholar 

Knuesel MT, Meyer KD, Donner AJ, Espinosa JM, Taatjes DJ (2009) The human CDK8 subcomplex is a histone kinase that requires Med12 for activity and can function independently of mediator. Mol Cell Biol 29:650–661. https://doi.org/10.1128/MCB.00993-08

Article  CAS  PubMed  Google Scholar 

Kampjarvi K, Kim NH, Keskitalo S, Clark AD, von Nandelstadh P, Turunen M, Heikkinen T, Park MJ, Makinen N, Kivinummi K et al (2016) Somatic MED12 mutations in prostate cancer and uterine leiomyomas promote tumorigenesis through distinct mechanisms. Prostate 76:22–31. https://doi.org/10.1002/pros.23092

Article  CAS  PubMed  Google Scholar 

Park MJ, Shen H, Kim NH, Gao F, Failor C, Knudtson JF, McLaughlin J, Halder SK, Heikkinen TA, Vahteristo P et al (2018) Mediator kinase disruption in MED12-mutant uterine fibroids from hispanic women of South Texas. J Clin Endocrinol Metab 103:4283–4292. https://doi.org/10.1210/jc.2018-00863

Article  PubMed  PubMed Central  Google Scholar 

Chao T-C, Chen S-F, Kim HJ, Tang H-C, Tseng H-C, Xu A, Palao L III, Khadka S, Li T, Huang M-F et al (2024) Structural basis of the human transcriptional Mediator regulated by its dissociable kinase module. Mol Cell 84:3932-3949.e3910. https://doi.org/10.1016/j.molcel.2024.09.001

Article  CAS  PubMed  Google Scholar 

Mas A, Nair S, Laknaur A, Simon C, Diamond MP, Al-Hendy A (2015) Stro-1/CD44 as putative human myometrial and fibroid stem cell markers. Fertil Steril 104:225-234.e223. https://doi.org/10.1016/j.fertnstert.2015.04.021

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mas A, Cervello I, Gil-Sanchis C, Faus A, Ferro J, Pellicer A, Simon C (2012) Identification and characterization of the human leiomyoma side population as putative tumor-initiating cells. Fertil Steril 98:741-751.e746. https://doi.org/10.1016/j.fertnstert.2012.04.044

Article  PubMed  Google Scholar 

Yin P, Ono M, Moravek MB, Coon JST, Navarro A, Monsivais D, Dyson MT, Druschitz SA, Malpani SS, Serna VA et al (2015) Human uterine leiomyoma stem/progenitor cells expressing CD34 and CD49b initiate tumors in vivo. J Clin Endocrinol Metab 100:E601-606. https://doi.org/10.1210/jc.2014-2134

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ono M, Maruyama T, Masuda H, Kajitani T, Nagashima T, Arase T, Ito M, Ohta K, Uchida H, Asada H et al (2007) Side population in human uterine myometrium displays phenotypic and functional characteristics of myometrial stem cells. Proc Natl Acad Sci 104:18700–18705. https://doi.org/10.1073/pnas.0704472104

Article  PubMed  PubMed Central  Google Scholar 

Ono M, Kajitani T, Uchida H, Arase T, Oda H, Uchida S, Ota K, Nagashima T, Masuda H, Miyazaki K et al (2015) CD34 and CD49f Double-positive and lineage marker-negative cells isolated from human myometrium exhibit stem cell-like properties involved in pregnancy-induced uterine remodeling. Biol Reprod 93:37. https://doi.org/10.1095/biolreprod.114.127126

Article  CAS  PubMed  PubMed Central  Google Scholar 

Patterson AL, George JW, Chatterjee A, Carpenter TJ, Wolfrum E, Chesla DW, Teixeira JM (2020) Putative human myometrial and fibroid stem-like cells have mesenchymal stem cell and endometrial stromal cell properties. Hum Reprod 35:44–57. https://doi.org/10.1093/humrep/dez247

Comments (0)

No login
gif