Role of endosomal RANKL–LGR4 signaling during osteoclast differentiation

Salo J, Lehenkari P, Mulari M, Metsikko K, Vaananen HK (1997) Removal of osteoclast bone resorption products by transcytosis. Science 276:270–273. https://doi.org/10.1126/science.276.5310.270

Article  CAS  PubMed  Google Scholar 

Pavlos NJ, Xu J, Riedel D, Yeoh JS, Teitelbaum SL, Papadimitriou JM, Jahn R, Ross FP, Zheng MH (2005) Rab3D regulates a novel vesicular trafficking pathway that is required for osteoclastic bone resorption. Mol Cell Biol 25:5253–5269. https://doi.org/10.1128/MCB.25.12.5253-5269.2005

Article  CAS  PubMed  PubMed Central  Google Scholar 

Deckers J, Anbergen T, Hokke AM, de Dreu A, Schrijver DP, de Bruin K, Toner YC, Beldman TJ, Spangler JB, de Greef TFA et al (2023) Engineering cytokine therapeutics. Nat Rev Bioeng 1:286–303. https://doi.org/10.1038/s44222-023-00030-y

Article  CAS  PubMed  PubMed Central  Google Scholar 

Noda K, Lu SL, Chen S, Tokuda K, Li Y, Hao F, Wada Y, Sun-Wada GH, Murakami S, Fukuda M et al (2023) Characterization of Rab32- and Rab38-positive lysosome-related organelles in osteoclasts and macrophages. J Biol Chem 299:105191. https://doi.org/10.1016/j.jbc.2023.105191

Article  CAS  PubMed  PubMed Central  Google Scholar 

Delevoye C, Marks MS, Raposo G (2019) Lysosome-related organelles as functional adaptations of the endolysosomal system. Curr Opin Cell Biol 59:147–158. https://doi.org/10.1016/j.ceb.2019.05.003

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhao H (2012) Membrane trafficking in osteoblasts and osteoclasts: new avenues for understanding and treating skeletal diseases. Traffic 13:1307–1314. https://doi.org/10.1111/j.1600-0854.2012.01395.x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rucci N, Teti A (2016) The “love-hate” relationship between osteoclasts and bone matrix. Matrix Biol 52–54:176–190. https://doi.org/10.1016/j.matbio.2016.02.009

Article  CAS  PubMed  Google Scholar 

Baron R (1989) Molecular mechanisms of bone resorption by the osteoclast. Anat Rec 224:317–324. https://doi.org/10.1002/ar.1092240220

Article  CAS  PubMed  Google Scholar 

Boyce BF, Xing L (2007) Biology of RANK, RANKL, and osteoprotegerin. Arthritis Res Ther 9(Suppl 1):S1. https://doi.org/10.1186/ar2165

Article  CAS  PubMed  PubMed Central  Google Scholar 

Narducci P, Bortul R, Bareggi R, Nicolin V (2010) Clathrin-dependent endocytosis of membrane-bound RANKL in differentiated osteoclasts. Eur J Histochem 54:e6. https://doi.org/10.4081/ejh.2010.e6

Article  CAS  PubMed  PubMed Central  Google Scholar 

Feng X (2005) RANKing intracellular signaling in osteoclasts. IUBMB Life 57:389–395. https://doi.org/10.1080/15216540500137669

Article  CAS  PubMed  Google Scholar 

Yao Z, Lei W, Duan R, Li Y, Luo L, Boyce BF (2017) RANKL cytokine enhances TNF-induced osteoclastogenesis independently of TNF receptor associated factor (TRAF) 6 by degrading TRAF3 in osteoclast precursors. J Biol Chem 292:10169–10179. https://doi.org/10.1074/jbc.M116.771816

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ono T, Nakashima T (2018) Recent advances in osteoclast biology. Histochem Cell Biol 149:325–341. https://doi.org/10.1007/s00418-018-1636-2

Article  CAS  PubMed  Google Scholar 

Kim N, Kadono Y, Takami M, Lee J, Lee SH, Okada F, Kim JH, Kobayashi T, Odgren PR, Nakano H et al (2005) Osteoclast differentiation independent of the TRANCE-RANK-TRAF6 axis. J Exp Med 202:589–595. https://doi.org/10.1084/jem.20050978

Article  CAS  PubMed  PubMed Central  Google Scholar 

Infante M, Fabi A, Cognetti F, Gorini S, Caprio M, Fabbri A (2019) RANKL/RANK/OPG system beyond bone remodeling: involvement in breast cancer and clinical perspectives. J Exp Clin Cancer Res 38:12. https://doi.org/10.1186/s13046-018-1001-2

Article  PubMed  PubMed Central  Google Scholar 

Luo J, Yang Z, Ma Y, Yue Z, Lin H, Qu G, Huang J, Dai W, Li C, Zheng C et al (2016) LGR4 is a receptor for RANKL and negatively regulates osteoclast differentiation and bone resorption. Nat Med 22:539–546. https://doi.org/10.1038/nm.4076

Article  CAS  PubMed  Google Scholar 

Jang Y, Sohn HM, Ko YJ, Hyun H, Lim W (2021) Inhibition of RANKL-induced osteoclastogenesis by novel mutant RANKL. Int J Mol Sci 22:434. https://doi.org/10.3390/ijms22010434

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jang Y, Lee H, Cho Y, Choi E, Jo S, Sohn HM, Kim BC, Ko YJ, Lim W (2024) An LGR4 agonist activates the GSK-3beta pathway to inhibit RANK-RANKL signaling during osteoclastogenesis in bone marrow-derived macrophages. Int J Mol Med 53:10. https://doi.org/10.3892/ijmm.2023.5334

Article  CAS  PubMed  Google Scholar 

Park JH, Lee NK, Lee SY (2017) Current understanding of RANK signaling in osteoclast differentiation and maturation. Mol Cells 40:706–713. https://doi.org/10.14348/molcells.2017.0225

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dobrowolski R, De Robertis EM (2011) Endocytic control of growth factor signalling: multivesicular bodies as signalling organelles. Nat Rev Mol Cell Biol 13:53–60. https://doi.org/10.1038/nrm3244

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sutherland C, Leighton IA, Cohen P (1993) Inactivation of glycogen synthase kinase-3 beta by phosphorylation: new kinase connections in insulin and growth-factor signalling. Biochem J 296(Pt 1):15–19. https://doi.org/10.1042/bj2960015

Article  CAS  PubMed  PubMed Central  Google Scholar 

Patterson AR, Endale M, Lampe K, Aksoylar HI, Flagg A, Woodgett JR, Hildeman D, Jordan MB, Singh H, Kucuk Z et al (2018) Gimap5-dependent inactivation of GSK3beta is required for CD4(+) T cell homeostasis and prevention of immune pathology. Nat Commun 9:430. https://doi.org/10.1038/s41467-018-02897-7

Article  CAS  PubMed  PubMed Central  Google Scholar 

Boyle WJ, Simonet WS, Lacey DL (2003) Osteoclast differentiation and activation. Nature 423:337–342. https://doi.org/10.1038/nature01658

Article  CAS  PubMed  Google Scholar 

Liu C, Walter TS, Huang P, Zhang S, Zhu X, Wu Y, Wedderburn LR, Tang P, Owens RJ, Stuart DI et al (2010) Structural and functional insights of RANKL-RANK interaction and signaling. J Immunol 184:6910–6919. https://doi.org/10.4049/jimmunol.0904033

Article  CAS  PubMed  Google Scholar 

Lang I, Fullsack S, Wyzgol A, Fick A, Trebing J, Arana JA, Schafer V, Weisenberger D, Wajant H (2016) Binding studies of TNF receptor superfamily (TNFRSF) receptors on intact cells. J Biol Chem 291:5022–5037. https://doi.org/10.1074/jbc.M115.683946

Article  CAS  PubMed  Google Scholar 

Lang I, Fullsack S, Wyzgol A, Fick A, Trebing J, Arana JAC, Schafer V, Weisenberger D, Wajant H (2020) Correction: binding studies of TNF receptor superfamily (TNFRSF) receptors on intact cells. J Biol Chem 295:11377. https://doi.org/10.1074/jbc.AAC120.015080

Article  CAS  PubMed 

Comments (0)

No login
gif