Salo J, Lehenkari P, Mulari M, Metsikko K, Vaananen HK (1997) Removal of osteoclast bone resorption products by transcytosis. Science 276:270–273. https://doi.org/10.1126/science.276.5310.270
Article CAS PubMed Google Scholar
Pavlos NJ, Xu J, Riedel D, Yeoh JS, Teitelbaum SL, Papadimitriou JM, Jahn R, Ross FP, Zheng MH (2005) Rab3D regulates a novel vesicular trafficking pathway that is required for osteoclastic bone resorption. Mol Cell Biol 25:5253–5269. https://doi.org/10.1128/MCB.25.12.5253-5269.2005
Article CAS PubMed PubMed Central Google Scholar
Deckers J, Anbergen T, Hokke AM, de Dreu A, Schrijver DP, de Bruin K, Toner YC, Beldman TJ, Spangler JB, de Greef TFA et al (2023) Engineering cytokine therapeutics. Nat Rev Bioeng 1:286–303. https://doi.org/10.1038/s44222-023-00030-y
Article CAS PubMed PubMed Central Google Scholar
Noda K, Lu SL, Chen S, Tokuda K, Li Y, Hao F, Wada Y, Sun-Wada GH, Murakami S, Fukuda M et al (2023) Characterization of Rab32- and Rab38-positive lysosome-related organelles in osteoclasts and macrophages. J Biol Chem 299:105191. https://doi.org/10.1016/j.jbc.2023.105191
Article CAS PubMed PubMed Central Google Scholar
Delevoye C, Marks MS, Raposo G (2019) Lysosome-related organelles as functional adaptations of the endolysosomal system. Curr Opin Cell Biol 59:147–158. https://doi.org/10.1016/j.ceb.2019.05.003
Article CAS PubMed PubMed Central Google Scholar
Zhao H (2012) Membrane trafficking in osteoblasts and osteoclasts: new avenues for understanding and treating skeletal diseases. Traffic 13:1307–1314. https://doi.org/10.1111/j.1600-0854.2012.01395.x
Article CAS PubMed PubMed Central Google Scholar
Rucci N, Teti A (2016) The “love-hate” relationship between osteoclasts and bone matrix. Matrix Biol 52–54:176–190. https://doi.org/10.1016/j.matbio.2016.02.009
Article CAS PubMed Google Scholar
Baron R (1989) Molecular mechanisms of bone resorption by the osteoclast. Anat Rec 224:317–324. https://doi.org/10.1002/ar.1092240220
Article CAS PubMed Google Scholar
Boyce BF, Xing L (2007) Biology of RANK, RANKL, and osteoprotegerin. Arthritis Res Ther 9(Suppl 1):S1. https://doi.org/10.1186/ar2165
Article CAS PubMed PubMed Central Google Scholar
Narducci P, Bortul R, Bareggi R, Nicolin V (2010) Clathrin-dependent endocytosis of membrane-bound RANKL in differentiated osteoclasts. Eur J Histochem 54:e6. https://doi.org/10.4081/ejh.2010.e6
Article CAS PubMed PubMed Central Google Scholar
Feng X (2005) RANKing intracellular signaling in osteoclasts. IUBMB Life 57:389–395. https://doi.org/10.1080/15216540500137669
Article CAS PubMed Google Scholar
Yao Z, Lei W, Duan R, Li Y, Luo L, Boyce BF (2017) RANKL cytokine enhances TNF-induced osteoclastogenesis independently of TNF receptor associated factor (TRAF) 6 by degrading TRAF3 in osteoclast precursors. J Biol Chem 292:10169–10179. https://doi.org/10.1074/jbc.M116.771816
Article CAS PubMed PubMed Central Google Scholar
Ono T, Nakashima T (2018) Recent advances in osteoclast biology. Histochem Cell Biol 149:325–341. https://doi.org/10.1007/s00418-018-1636-2
Article CAS PubMed Google Scholar
Kim N, Kadono Y, Takami M, Lee J, Lee SH, Okada F, Kim JH, Kobayashi T, Odgren PR, Nakano H et al (2005) Osteoclast differentiation independent of the TRANCE-RANK-TRAF6 axis. J Exp Med 202:589–595. https://doi.org/10.1084/jem.20050978
Article CAS PubMed PubMed Central Google Scholar
Infante M, Fabi A, Cognetti F, Gorini S, Caprio M, Fabbri A (2019) RANKL/RANK/OPG system beyond bone remodeling: involvement in breast cancer and clinical perspectives. J Exp Clin Cancer Res 38:12. https://doi.org/10.1186/s13046-018-1001-2
Article PubMed PubMed Central Google Scholar
Luo J, Yang Z, Ma Y, Yue Z, Lin H, Qu G, Huang J, Dai W, Li C, Zheng C et al (2016) LGR4 is a receptor for RANKL and negatively regulates osteoclast differentiation and bone resorption. Nat Med 22:539–546. https://doi.org/10.1038/nm.4076
Article CAS PubMed Google Scholar
Jang Y, Sohn HM, Ko YJ, Hyun H, Lim W (2021) Inhibition of RANKL-induced osteoclastogenesis by novel mutant RANKL. Int J Mol Sci 22:434. https://doi.org/10.3390/ijms22010434
Article CAS PubMed PubMed Central Google Scholar
Jang Y, Lee H, Cho Y, Choi E, Jo S, Sohn HM, Kim BC, Ko YJ, Lim W (2024) An LGR4 agonist activates the GSK-3beta pathway to inhibit RANK-RANKL signaling during osteoclastogenesis in bone marrow-derived macrophages. Int J Mol Med 53:10. https://doi.org/10.3892/ijmm.2023.5334
Article CAS PubMed Google Scholar
Park JH, Lee NK, Lee SY (2017) Current understanding of RANK signaling in osteoclast differentiation and maturation. Mol Cells 40:706–713. https://doi.org/10.14348/molcells.2017.0225
Article CAS PubMed PubMed Central Google Scholar
Dobrowolski R, De Robertis EM (2011) Endocytic control of growth factor signalling: multivesicular bodies as signalling organelles. Nat Rev Mol Cell Biol 13:53–60. https://doi.org/10.1038/nrm3244
Article CAS PubMed PubMed Central Google Scholar
Sutherland C, Leighton IA, Cohen P (1993) Inactivation of glycogen synthase kinase-3 beta by phosphorylation: new kinase connections in insulin and growth-factor signalling. Biochem J 296(Pt 1):15–19. https://doi.org/10.1042/bj2960015
Article CAS PubMed PubMed Central Google Scholar
Patterson AR, Endale M, Lampe K, Aksoylar HI, Flagg A, Woodgett JR, Hildeman D, Jordan MB, Singh H, Kucuk Z et al (2018) Gimap5-dependent inactivation of GSK3beta is required for CD4(+) T cell homeostasis and prevention of immune pathology. Nat Commun 9:430. https://doi.org/10.1038/s41467-018-02897-7
Article CAS PubMed PubMed Central Google Scholar
Boyle WJ, Simonet WS, Lacey DL (2003) Osteoclast differentiation and activation. Nature 423:337–342. https://doi.org/10.1038/nature01658
Article CAS PubMed Google Scholar
Liu C, Walter TS, Huang P, Zhang S, Zhu X, Wu Y, Wedderburn LR, Tang P, Owens RJ, Stuart DI et al (2010) Structural and functional insights of RANKL-RANK interaction and signaling. J Immunol 184:6910–6919. https://doi.org/10.4049/jimmunol.0904033
Article CAS PubMed Google Scholar
Lang I, Fullsack S, Wyzgol A, Fick A, Trebing J, Arana JA, Schafer V, Weisenberger D, Wajant H (2016) Binding studies of TNF receptor superfamily (TNFRSF) receptors on intact cells. J Biol Chem 291:5022–5037. https://doi.org/10.1074/jbc.M115.683946
Article CAS PubMed Google Scholar
Lang I, Fullsack S, Wyzgol A, Fick A, Trebing J, Arana JAC, Schafer V, Weisenberger D, Wajant H (2020) Correction: binding studies of TNF receptor superfamily (TNFRSF) receptors on intact cells. J Biol Chem 295:11377. https://doi.org/10.1074/jbc.AAC120.015080
Comments (0)