Adlakha, Y. K., & Seth, P. (2017). The expanding horizon of MicroRNAs in cellular reprogramming. Progress in Neurobiology, 148, 21–39.
Aizer, A., Kalo, A., Kafri, P., Shraga, A., Ben-Yishay, R., Jacob, A., & Shav-Tal, Y. (2014). Quantifying mRNA targeting to P-bodies in living human cells reveals their dual role in mRNA decay and storage. Journal of Cell Science, 127(20), 4443–4456.
Ali, A., Ahmed Sheikh, I., Mirza, Z., Hua Gan, S., Amjad Kamal, M., Abuzenadah, M., & A., … & Md. Ashraf, G. (2015). Application of proteomic tools in modern nanotechnological approaches towards effective management of neurodegenerative disorders. Current Drug Metabolism, 16(5), 376–388.
Alkhazaali-Ali, Z., Sahab-Negah, S., Boroumand, A. R., & Tavakol-Afshari, J. (2024). MicroRNA (miRNA) as a biomarker for diagnosis, prognosis, and therapeutics molecules in neurodegenerative disease. Biomedicine & Pharmacotherapy, 177, 116899.
Anderson, P., & Kedersha, N. (2006). RNA granules. The Journal of Cell Biology, 172(6), 803–808.
Article PubMed PubMed Central Google Scholar
Aschrafi, A., Schwechter, A. D., Mameza, M. G., Natera-Naranjo, O., Gioio, A. E., & Kaplan, B. B. (2008). MicroRNA-338 regulates local cytochrome c oxidase IV mRNA levels and oxidative phosphorylation in the axons of sympathetic neurons. Journal of Neuroscience, 28(47), 12581–12590.
Ban, J. J., Chung, J. Y., Lee, M., Im, W., & Kim, M. (2017). MicroRNA-27a reduces mutant hutingtin aggregation in an in vitro model of Huntington’s disease. Biochemical and Biophysical Research Communications, 488(2), 316–321.
Baudet, M. L., Zivraj, K. H., Abreu-Goodger, C., Muldal, A., Armisen, J., Blenkiron, C., & Holt, C. E. (2012). miR-124 acts through CoREST to control onset of Sema3A sensitivity in navigating retinal growth cones. Nature Neuroscience, 15(1), 29–38.
Beclin, C., Follert, P., Stappers, E., Barral, S., Coré, N., De Chevigny, A., & Cremer, H. (2016). miR-200 family controls late steps of postnatal forebrain neurogenesis via Zeb2 inhibition. Scientific Reports, 6(1), 35729.
Article PubMed PubMed Central Google Scholar
Bhatnagar, D., Ladhe, S., & Kumar, D. (2023). Discerning the prospects of miRNAs as a multi-target therapeutic and diagnostic for Alzheimer’s disease. Molecular Neurobiology, 60(10), 5954–5974.
Bhinge, A., Namboori, S. C., Bithell, A., Soldati, C., Buckley, N. J., & Stanton, L. W. (2016). MiR-375 is essential for human spinal motor neuron development and may be involved in motor neuron degeneration. Stem Cells, 34(1), 124–134.
Bridge, K. S., Shah, K. M., Li, Y., Foxler, D. E., Wong, S. C., Miller, D. C., & Sharp, T. V. (2017). Argonaute utilization for miRNA silencing is determined by phosphorylation-dependent recruitment of LIM-domain-containing proteins. Cell Reports, 20(1), 173–187.
Bronevetsky, Y., Villarino, A. V., Eisley, C. J., Barbeau, R., Barczak, A. J., Heinz, G. A., & Ansel, K. M. (2013). T cell activation induces proteasomal degradation of Argonaute and rapid remodeling of the microRNA repertoire. Journal of Experimental Medicine, 210(2), 417–432.
Article PubMed PubMed Central Google Scholar
Bukeirat, M., Sarkar, S. N., Hu, H., Quintana, D. D., Simpkins, J. W., & Ren, X. (2016). MiR-34a regulates blood–brain barrier permeability and mitochondrial function by targeting cytochrome c. Journal of Cerebral Blood Flow & Metabolism, 36(2), 387–392.
Chandran, R., Mehta, S. L., & Vemuganti, R. (2017). Non-coding RNAs and neuroprotection after acute CNS injuries. Neurochemistry International, 111, 12–22.
Article PubMed PubMed Central Google Scholar
Chen, B. Y., Lin, J. J., Lu, M. K., Tan, H. P., Jang, F. L., & Lin, S. H. (2021). Neurodevelopment regulators miR-137 and miR-34 family as biomarkers for early and adult onset schizophrenia. NPJ Schizophrenia, 7(1), 35.
Article PubMed PubMed Central Google Scholar
Chen, D., Hu, S., Wu, Z., Liu, J., & Li, S. (2018). The role of MiR-132 in regulating neural stem cell proliferation, differentiation and neuronal maturation. Cellular Physiology and Biochemistry, 47(6), 2319–2330.
Chen, X., Yang, H., Zhou, X., Zhang, L., & Lu, X. (2016). MiR-93 targeting EphA4 promotes neurite outgrowth from spinal cord neurons. Journal of Molecular Neuroscience, 58, 517–524.
Chi, B., Deng, L., Zhi, Z., Wei, Y., Lv, L., Yang, W., & Pang, L. (2022). Upregulation of miRNA-26a enhances the apoptosis of cerebral neurons by targeting EphA2 and inhibiting the MAPK pathway. Developmental Neuroscience, 44(6), 615–628.
Choy, F. C., Klarić, T. S., Koblar, S. A., & Lewis, M. D. (2017). miR-744 and miR-224 downregulate Npas4 and affect lineage differentiation potential and neurite development during neural differentiation of mouse embryonic stem cells. Molecular Neurobiology, 54, 3528–3541.
Cougot, N., Bhattacharyya, S. N., Tapia-Arancibia, L., Bordonné, R., Filipowicz, W., Bertrand, E., & Rage, F. (2008). Dendrites of mammalian neurons contain specialized P-body-like structures that respond to neuronal activation. Journal of Neuroscience, 28(51), 13793–13804.
Das, E., & Bhattacharyya, N. P. (2014). MicroRNA-432 contributes to dopamine cocktail and retinoic acid induced differentiation of human neuroblastoma cells by targeting NESTIN and RCOR1 genes. FEBS Letters, 588(9), 1706–1714.
Deng, Y., Zhu, G., Luo, H., & Zhao, S. (2016). MicroRNA-203 as a stemness inhibitor of glioblastoma stem cells. Molecules and Cells, 39(8), 619–624.
Article PubMed PubMed Central Google Scholar
Ding, H., Huang, Z., Chen, M., Wang, C., Chen, X., Chen, J., & Zhang, J. (2016). Identification of a panel of five serum miRNAs as a biomarker for Parkinson’s disease. Parkinsonism & Related Disorders, 22, 68–73.
Dong, L. G., Lu, F. F., Zu, J., Zhang, W., Xu, C. Y., Jin, G. L., & Cui, G. Y. (2020). MiR-133b inhibits MPP+-induced apoptosis in Parkinson’s disease model by inhibiting the ERK1/2 signaling pathway. European Review for Medical & Pharmacological Sciences, 24(21), 11192–11198.
Doxakis, E. (2010). Post-transcriptional regulation of α-synuclein expression by mir-7 and mir-153. Journal of Biological Chemistry, 285(17), 12726–12734.
Article PubMed PubMed Central Google Scholar
Dumont, S., Le Pennec, S., Donnart, A., Teusan, R., Steenman, M., Chevalier, C., & Savagner, F. (2018). Transcriptional orchestration of mitochondrial homeostasis in a cellular model of PGC-1-related coactivator-dependent thyroid tumor. Oncotarget, 9(22), 15883.
Article PubMed PubMed Central Google Scholar
Dutta, S., Sklerov, M., Teunissen, C. E., & Bitan, G. (2023). Trends in biomarkers for neurodegenerative diseases: Current research and future perspectives. Frontiers in Aging Neuroscience, 15, 1153932.
Article PubMed PubMed Central Google Scholar
Ebada, M. A., Mostafa, A., Gadallah, A. H. A., Alkanj, S., Alghamdi, B. S., Ashraf, G. M., & Salama, M. (2023). Potential regulation of miRNA-29 and miRNA-9 by estrogens in neurodegenerative disorders: An insightful perspective. Brain Sciences, 13(2), 243.
Article PubMed PubMed Central Google Scholar
Elangovan, A., Venkatesan, D., Selvaraj, P., Pasha, M. Y., Babu, H. W. S., Iyer, M., & Vellingiri, B. (2023). miRNA in Parkinson’s disease: From pathogenesis to theranostic approaches. Journal of Cellular Physiology, 238(2), 329–354.
Esteves, M., Abreu, R., Fernandes, H., Serra-Almeida, C., Martins, P. A., Barão, M., & Bernardino, L. (2022). MicroRNA-124–3p-enriched small extracellular vesicles as a therapeutic approach for Parkinson’s disease. Molecular Therapy, 30(10), 3176–3192.
Article PubMed PubMed Central Google Scholar
Fan, C., Li, Y., Lan, T., Wang, W., Long, Y., & Yu, S. Y. (2022). Microglia secrete miR-146a-5p-containing exosomes to regulate neurogenesis in depression. Molecular Therapy, 30(3), 1300–1314.
Fu, X., Baranova, A., Cao, H., Liu, Y., Sun, J., & Zhang, F. (2023). miR-9-5p deficiency contributes to schizophrenia. Schizophrenia Research, 262, 168–174.
Gao, Y. N., Zhang, Y. Q., Wang, H., Deng, Y. L., & Li, N. M. (2022). A new player in depression: MiRNAs as modulators of altered synaptic plasticity. International Journal of Molecular Sciences, 23(9), 4555.
Comments (0)