Unraveling the role of Nrf2 in dopaminergic neurons: a review of oxidative stress and mitochondrial dysfunction in Parkinson’s disease

Ahmed SMU, Luo L, Namani A, Wang XJ, Tang X (2017) Nrf2 signaling pathway: pivotal roles in inflammation. Biochimica et Biophysica Acta (BBA)-Molecular basis of disease. 1863(2):585–597. https://doi.org/10.1016/j.bbadis.2016.11.005

Ahuja M, Kaidery NA, Dutta D, Attucks OC, Kazakov EH, Gazaryan I, Matsumoto M, Igarashi K, Sharma SM, Thomas B (2022) Harnessing the therapeutic potential of the Nrf2/Bach1 signaling pathway in Parkinson’s Disease. Antioxidants 11(9):1780. https://doi.org/10.3390/antiox11091780

Article  PubMed  PubMed Central  CAS  Google Scholar 

Armstrong MJ, Okun MS (2020) Diagnosis and treatment of Parkinson disease: a review. JAMA 323(6):548–560. https://doi.org/10.1001/jama.2019.22360

Article  PubMed  Google Scholar 

Arruri VK, Gundu C, Kalvala AK, Sherkhane B, Khatri DK, Singh SB (2022) Carvacrol abates NLRP3 inflammasome activation by augmenting Keap1/Nrf-2/p62 directed autophagy and mitochondrial quality control in neuropathic pain. Nutr Neurosci 25(8):1731–1746. https://doi.org/10.1080/1028415X.2021.1892985

Article  PubMed  CAS  Google Scholar 

Au KL, Wong JK, Tsuboi T, Eisinger RS, Moore K, Lemos Melo Lobo Jofili Lopes J, Holland MT, Holanda VM, Peng-Chen Z, Patterson A, Foote KD (2021) Globus Pallidus internus (GPi) deep brain stimulation for Parkinson’s disease: expert review and commentary. Neurol Therapy 10:7–30. https://doi.org/10.1007/s40120-020-00220-5

Article  Google Scholar 

Baluchnejadmojarad T, Rabiee N, Zabihnejad S, Roghani M (2017) Ellagic acid exerts protective effect in intrastriatal 6-hydroxydopamine rat model of Parkinson’s disease: possible involvement of ERβ/Nrf2/HO-1 signaling. Brain Res 1662:23–30. https://doi.org/10.1016/j.brainres.2017.02.021

Article  PubMed  CAS  Google Scholar 

Barone MC, Sykiotis GP, Bohmann D (2011) Genetic activation of Nrf2 signaling is sufficient to ameliorate neurodegenerative phenotypes in a Drosophila model of Parkinson’s disease. Dis Models Mech 4(5):701–707. https://doi.org/10.1242/dmm.007575

Article  CAS  Google Scholar 

Bernardi P, Gerle C, Halestrap AP, Jonas EA, Karch J, Mnatsakanyan N, Pavlov E, Sheu SS, Soukas AA (2023) Identity, structure, and function of the mitochondrial permeability transition pore: controversies, consensus, recent advances, and future directions. Cell Death Differ 30(8):1869–1885. https://doi.org/10.1038/s41418-023-01187-0

Article  PubMed  PubMed Central  CAS  Google Scholar 

Biosa A, Arduini I, Soriano ME, Giorgio V, Bernardi P, Bisaglia M, Bubacco L (2018) Dopamine oxidation products as mitochondrial endotoxins, a potential molecular mechanism for preferential neurodegeneration in Parkinson’s disease. ACS Chem Neurosci 9(11):2849–2858. https://doi.org/10.1021/acschemneuro.8b00276

Article  PubMed  CAS  Google Scholar 

Bose A, Beal MF (2016) Mitochondrial dysfunction in Parkinson’s disease. J Neurochem 139:216–231. https://doi.org/10.1111/jnc.13731

Article  PubMed  CAS  Google Scholar 

Brandes MS, Gray NE (2020) NRF2 as a therapeutic target in neurodegenerative diseases. ASN Neuro 12:1759091419899782. https://doi.org/10.1177/1759091419899782

Article  PubMed  PubMed Central  CAS  Google Scholar 

Campolo M, Casili G, Biundo F, Crupi R, Cordaro M, Cuzzocrea S, Esposito E (2017) The neuroprotective effect of dimethyl fumarate in an MPTP-mouse model of Parkinson’s disease: involvement of reactive oxygen species/nuclear factor-κB/nuclear transcription factor related to NF-E2. Antioxid Redox Signal 27(8):453–471. https://doi.org/10.1089/ars.2016.6800

Article  PubMed  PubMed Central  CAS  Google Scholar 

Carbone C (2019) Ih loss of function as a pathogenic mechanism underlying the selective vulnerability of nigral dopamine neurons in Parkinson’s disease. https://hdl.handle.net/2158/1155812

Castro-Sánchez S, García-Yagüe ÁJ, Kügler S, Lastres-Becker I (2019) CX3CR1-deficient microglia shows impaired signalling of the transcription factor NRF2: implications in tauopathies. Redox Biol 22:101118. https://doi.org/10.1016/j.redox.2019.101118

Article  PubMed  PubMed Central  CAS  Google Scholar 

Chandrasekhar Y, Phani Kumar G, Ramya EM, Anilakumar KR (2018) Gallic acid protects 6-OHDA induced neurotoxicity by attenuating oxidative stress in human dopaminergic cell line. Neurochem Res 43:1150–1160. https://doi.org/10.1007/s11064-018-2530-y

Article  PubMed  CAS  Google Scholar 

Chen JH, Ou HP, Lin CY, Lin FJ, Wu CR, Chang SW, Tsai CW (2012) Carnosic acid prevents 6-hydroxydopamine-induced cell death in SH-SY5Y cells via mediation of glutathione synthesis. Chem Res Toxicol 25(9):1893–1901. https://doi.org/10.1021/tx300171u

Article  PubMed  CAS  Google Scholar 

Choi JW, Kim S, Yoo JS, Kim HJ, Kim HJ, Kim BE, Lee EH, Lee YS, Park JH, Park KD (2021) Development and optimization of halogenated vinyl sulfones as Nrf2 activators for the treatment of Parkinson’s disease. Eur J Med Chem 212:113103. https://doi.org/10.1016/j.ejmech.2020.113103

Article  PubMed  CAS  Google Scholar 

Cui Q, Li X, Zhu H (2016) Curcumin ameliorates dopaminergic neuronal oxidative damage via activation of the Akt/Nrf2 pathway. Mol Med Rep 13(2):1381–1388. https://doi.org/10.3892/mmr.2015.4657

Article  PubMed  CAS  Google Scholar 

Dias V, Junn E, Mouradian MM (2013) The role of oxidative stress in Parkinson’s disease. J Parkinson’s Disease 3(4):461–491. https://doi.org/10.3233/JPD-130230

Article  CAS  Google Scholar 

Epifane-de-Assunção MC, Bispo AG, Ribeiro-dos-Santos Â, Cavalcante GC (2024) Molecular alterations in Core subunits of mitochondrial complex I and their relation to Parkinson’s Disease. Mol Neurobiol Sep 27:1–5. https://doi.org/10.1007/s12035-024-04526-5

Article  CAS  Google Scholar 

Flores-Ponce X, Velasco I (2024) Dopaminergic neuron metabolism: relevance for understanding Parkinson’s disease. Metabolomics 20(6):116. https://doi.org/10.1007/s11306-024-02181-4

Article  PubMed  PubMed Central  CAS  Google Scholar 

Gaballah HH, Zakaria SS, Elbatsh MM, Tahoon NM (2016) Modulatory effects of resveratrol on endoplasmic reticulum stress-associated apoptosis and oxido-inflammatory markers in a rat model of rotenone-induced Parkinson’s disease. Chemico-Biol Interact 251:10–16. https://doi.org/10.1016/j.fct.2020.111644

Article  CAS  Google Scholar 

Gan L, Johnson JA (2014) Oxidative damage and the Nrf2-ARE pathway in neurodegenerative diseases. Biochimica et Biophysica Acta (BBA)-Molecular. Basis Disease 1842(8):1208–1218. https://doi.org/10.1016/j.bbadis.2013.12.011

Article  CAS  Google Scholar 

Gao XY, Yang T, Gu Y, Sun XH (2022) Mitochondrial dysfunction in Parkinson’s disease: from mechanistic insights to therapy. Front Aging Neurosci 14:885500. https://doi.org/10.3389/fnagi.2022.885500

Article  PubMed  PubMed Central  CAS  Google Scholar 

García E, Santana-Martínez R, Silva-Islas CA, Colín-González AL, Galván-Arzate S, Heras Y, Maldonado PD, Sotelo J, Santamaría A (2014) S-allyl cysteine protects against MPTP-induced striatal and nigral oxidative neurotoxicity in mice: participation of Nrf2. Free Radic Res 48(2):159–167. https://doi.org/10.3109/10715762.2013.857019

Article  PubMed  CAS  Google Scholar 

Giacomello M, Pyakurel A, Glytsou C, Scorrano L (2020) The cell biology of mitochondrial membrane dynamics. Nat Rev Mol Cell Biol 21(4):204–224. https://doi.org/10.1038/s41580-020-0210-7

Article  PubMed  CAS  Google Scholar 

Gnaiger E (2020) Mitochondrial pathways and respiratory control: an introduction to OXPHOS analysis. Bioenerg Commun 2020:2–2. https://doi.org/10.26124/bec:2020-0002

Guo C, Zhu J, Wang J, Duan J, Ma S, Yin Y, Quan W, Zhang W, Guan Y, Ding Y, Wen A (2019) Neuroprotective effects of protocatechuic aldehyde through PLK2/p-GSK3β/Nrf2 signaling pathway in both in vivo and in vitro models of Parkinson’s disease. Aging 11(21):9424. https://doi.org/10.18632/aging.102394

Article  PubMed  PubMed Central  CAS  Google Scholar 

Gureev AP, Popov VN (2019) Nrf2/ARE pathway as a therapeutic target for the treatment of Parkinson diseases. Neurochem Res 44(10):2273–2279. https://doi.org/10.1007/s11064-018-02711-2

Article  PubMed  CAS  Google Scholar 

Jain R, Begum N, Rajan S, Tryphena KP, Khatri DK (2024) Role of F-actin-mediated endocytosis and exercise in mitochondrial transplantation in an experimental Parkinson’s disease mouse model. Mitochondrion 74:101824.

Comments (0)

No login
gif