Ahmed SMU, Luo L, Namani A, Wang XJ, Tang X (2017) Nrf2 signaling pathway: pivotal roles in inflammation. Biochimica et Biophysica Acta (BBA)-Molecular basis of disease. 1863(2):585–597. https://doi.org/10.1016/j.bbadis.2016.11.005
Ahuja M, Kaidery NA, Dutta D, Attucks OC, Kazakov EH, Gazaryan I, Matsumoto M, Igarashi K, Sharma SM, Thomas B (2022) Harnessing the therapeutic potential of the Nrf2/Bach1 signaling pathway in Parkinson’s Disease. Antioxidants 11(9):1780. https://doi.org/10.3390/antiox11091780
Article PubMed PubMed Central CAS Google Scholar
Armstrong MJ, Okun MS (2020) Diagnosis and treatment of Parkinson disease: a review. JAMA 323(6):548–560. https://doi.org/10.1001/jama.2019.22360
Arruri VK, Gundu C, Kalvala AK, Sherkhane B, Khatri DK, Singh SB (2022) Carvacrol abates NLRP3 inflammasome activation by augmenting Keap1/Nrf-2/p62 directed autophagy and mitochondrial quality control in neuropathic pain. Nutr Neurosci 25(8):1731–1746. https://doi.org/10.1080/1028415X.2021.1892985
Article PubMed CAS Google Scholar
Au KL, Wong JK, Tsuboi T, Eisinger RS, Moore K, Lemos Melo Lobo Jofili Lopes J, Holland MT, Holanda VM, Peng-Chen Z, Patterson A, Foote KD (2021) Globus Pallidus internus (GPi) deep brain stimulation for Parkinson’s disease: expert review and commentary. Neurol Therapy 10:7–30. https://doi.org/10.1007/s40120-020-00220-5
Baluchnejadmojarad T, Rabiee N, Zabihnejad S, Roghani M (2017) Ellagic acid exerts protective effect in intrastriatal 6-hydroxydopamine rat model of Parkinson’s disease: possible involvement of ERβ/Nrf2/HO-1 signaling. Brain Res 1662:23–30. https://doi.org/10.1016/j.brainres.2017.02.021
Article PubMed CAS Google Scholar
Barone MC, Sykiotis GP, Bohmann D (2011) Genetic activation of Nrf2 signaling is sufficient to ameliorate neurodegenerative phenotypes in a Drosophila model of Parkinson’s disease. Dis Models Mech 4(5):701–707. https://doi.org/10.1242/dmm.007575
Bernardi P, Gerle C, Halestrap AP, Jonas EA, Karch J, Mnatsakanyan N, Pavlov E, Sheu SS, Soukas AA (2023) Identity, structure, and function of the mitochondrial permeability transition pore: controversies, consensus, recent advances, and future directions. Cell Death Differ 30(8):1869–1885. https://doi.org/10.1038/s41418-023-01187-0
Article PubMed PubMed Central CAS Google Scholar
Biosa A, Arduini I, Soriano ME, Giorgio V, Bernardi P, Bisaglia M, Bubacco L (2018) Dopamine oxidation products as mitochondrial endotoxins, a potential molecular mechanism for preferential neurodegeneration in Parkinson’s disease. ACS Chem Neurosci 9(11):2849–2858. https://doi.org/10.1021/acschemneuro.8b00276
Article PubMed CAS Google Scholar
Bose A, Beal MF (2016) Mitochondrial dysfunction in Parkinson’s disease. J Neurochem 139:216–231. https://doi.org/10.1111/jnc.13731
Article PubMed CAS Google Scholar
Brandes MS, Gray NE (2020) NRF2 as a therapeutic target in neurodegenerative diseases. ASN Neuro 12:1759091419899782. https://doi.org/10.1177/1759091419899782
Article PubMed PubMed Central CAS Google Scholar
Campolo M, Casili G, Biundo F, Crupi R, Cordaro M, Cuzzocrea S, Esposito E (2017) The neuroprotective effect of dimethyl fumarate in an MPTP-mouse model of Parkinson’s disease: involvement of reactive oxygen species/nuclear factor-κB/nuclear transcription factor related to NF-E2. Antioxid Redox Signal 27(8):453–471. https://doi.org/10.1089/ars.2016.6800
Article PubMed PubMed Central CAS Google Scholar
Carbone C (2019) Ih loss of function as a pathogenic mechanism underlying the selective vulnerability of nigral dopamine neurons in Parkinson’s disease. https://hdl.handle.net/2158/1155812
Castro-Sánchez S, García-Yagüe ÁJ, Kügler S, Lastres-Becker I (2019) CX3CR1-deficient microglia shows impaired signalling of the transcription factor NRF2: implications in tauopathies. Redox Biol 22:101118. https://doi.org/10.1016/j.redox.2019.101118
Article PubMed PubMed Central CAS Google Scholar
Chandrasekhar Y, Phani Kumar G, Ramya EM, Anilakumar KR (2018) Gallic acid protects 6-OHDA induced neurotoxicity by attenuating oxidative stress in human dopaminergic cell line. Neurochem Res 43:1150–1160. https://doi.org/10.1007/s11064-018-2530-y
Article PubMed CAS Google Scholar
Chen JH, Ou HP, Lin CY, Lin FJ, Wu CR, Chang SW, Tsai CW (2012) Carnosic acid prevents 6-hydroxydopamine-induced cell death in SH-SY5Y cells via mediation of glutathione synthesis. Chem Res Toxicol 25(9):1893–1901. https://doi.org/10.1021/tx300171u
Article PubMed CAS Google Scholar
Choi JW, Kim S, Yoo JS, Kim HJ, Kim HJ, Kim BE, Lee EH, Lee YS, Park JH, Park KD (2021) Development and optimization of halogenated vinyl sulfones as Nrf2 activators for the treatment of Parkinson’s disease. Eur J Med Chem 212:113103. https://doi.org/10.1016/j.ejmech.2020.113103
Article PubMed CAS Google Scholar
Cui Q, Li X, Zhu H (2016) Curcumin ameliorates dopaminergic neuronal oxidative damage via activation of the Akt/Nrf2 pathway. Mol Med Rep 13(2):1381–1388. https://doi.org/10.3892/mmr.2015.4657
Article PubMed CAS Google Scholar
Dias V, Junn E, Mouradian MM (2013) The role of oxidative stress in Parkinson’s disease. J Parkinson’s Disease 3(4):461–491. https://doi.org/10.3233/JPD-130230
Epifane-de-Assunção MC, Bispo AG, Ribeiro-dos-Santos Â, Cavalcante GC (2024) Molecular alterations in Core subunits of mitochondrial complex I and their relation to Parkinson’s Disease. Mol Neurobiol Sep 27:1–5. https://doi.org/10.1007/s12035-024-04526-5
Flores-Ponce X, Velasco I (2024) Dopaminergic neuron metabolism: relevance for understanding Parkinson’s disease. Metabolomics 20(6):116. https://doi.org/10.1007/s11306-024-02181-4
Article PubMed PubMed Central CAS Google Scholar
Gaballah HH, Zakaria SS, Elbatsh MM, Tahoon NM (2016) Modulatory effects of resveratrol on endoplasmic reticulum stress-associated apoptosis and oxido-inflammatory markers in a rat model of rotenone-induced Parkinson’s disease. Chemico-Biol Interact 251:10–16. https://doi.org/10.1016/j.fct.2020.111644
Gan L, Johnson JA (2014) Oxidative damage and the Nrf2-ARE pathway in neurodegenerative diseases. Biochimica et Biophysica Acta (BBA)-Molecular. Basis Disease 1842(8):1208–1218. https://doi.org/10.1016/j.bbadis.2013.12.011
Gao XY, Yang T, Gu Y, Sun XH (2022) Mitochondrial dysfunction in Parkinson’s disease: from mechanistic insights to therapy. Front Aging Neurosci 14:885500. https://doi.org/10.3389/fnagi.2022.885500
Article PubMed PubMed Central CAS Google Scholar
García E, Santana-Martínez R, Silva-Islas CA, Colín-González AL, Galván-Arzate S, Heras Y, Maldonado PD, Sotelo J, Santamaría A (2014) S-allyl cysteine protects against MPTP-induced striatal and nigral oxidative neurotoxicity in mice: participation of Nrf2. Free Radic Res 48(2):159–167. https://doi.org/10.3109/10715762.2013.857019
Article PubMed CAS Google Scholar
Giacomello M, Pyakurel A, Glytsou C, Scorrano L (2020) The cell biology of mitochondrial membrane dynamics. Nat Rev Mol Cell Biol 21(4):204–224. https://doi.org/10.1038/s41580-020-0210-7
Article PubMed CAS Google Scholar
Gnaiger E (2020) Mitochondrial pathways and respiratory control: an introduction to OXPHOS analysis. Bioenerg Commun 2020:2–2. https://doi.org/10.26124/bec:2020-0002
Guo C, Zhu J, Wang J, Duan J, Ma S, Yin Y, Quan W, Zhang W, Guan Y, Ding Y, Wen A (2019) Neuroprotective effects of protocatechuic aldehyde through PLK2/p-GSK3β/Nrf2 signaling pathway in both in vivo and in vitro models of Parkinson’s disease. Aging 11(21):9424. https://doi.org/10.18632/aging.102394
Article PubMed PubMed Central CAS Google Scholar
Gureev AP, Popov VN (2019) Nrf2/ARE pathway as a therapeutic target for the treatment of Parkinson diseases. Neurochem Res 44(10):2273–2279. https://doi.org/10.1007/s11064-018-02711-2
Article PubMed CAS Google Scholar
Jain R, Begum N, Rajan S, Tryphena KP, Khatri DK (2024) Role of F-actin-mediated endocytosis and exercise in mitochondrial transplantation in an experimental Parkinson’s disease mouse model. Mitochondrion 74:101824.
Comments (0)