Exploring the Neuroprotective Effects of Rufinamide in a Streptozotocin-Induced Dementia Model

Abdalla FH, Cardoso AM, Pereira LB, Schmatz R, Gonçalves JF, Stefanello N, Fiorenza AM, Gutierres JM, Serres JDS, Zanini D, Pimentel VC (2013) Neuroprotective efect of quercetin in ectoenzymes and acetylcholinesterase activities in cerebral cortex synaptosomes of cadmium-exposed rats. Mol Cell Biochem 381(1):1–8. https://doi.org/10.1007/s11010-013-1659-x

Article  CAS  PubMed  Google Scholar 

Agostinho PA, Cunha R, Oliveira C (2010) Neuroinflammation, oxidative stress and the pathogenesis of Alzheimer’s disease. Curr Pharm des 16(25):2766–2778. https://doi.org/10.2174/138161210793176572

Article  CAS  PubMed  Google Scholar 

Anoush M, Bijani S, Moslemifar F, Jahanpour F, Kalantari-Hesari A, Hosseini MJ (2023) Edaravone improves streptozotocin-induced memory impairment via alleviation of behavioral dysfunction, oxidative stress, inflammation, and histopathological parameters. Behav Neurol 2023:9652513. https://doi.org/10.1155/2023/9652513

Article  PubMed  PubMed Central  Google Scholar 

Banchroft AS, Turner DR (1996) Theory and practice of histological techniques fourth ed. Biotech Histochem. https://doi.org/10.3109/10520295.2015.1094574

Article  Google Scholar 

Behl T, Kaur D, Sehgal A, Singh S, Sharma N, Zengin G, Andronie-Cioara FL, Toma MM, Bungau S, Bumbu AG (2021a) Role of monoamine oxidase activity in Alzheimer’s disease: an insight into the therapeutic potential of inhibitors. Molecules (Basel, Switzerland) 26(12):3724. https://doi.org/10.3390/molecules26123724

Article  CAS  PubMed  Google Scholar 

Behl T, Kaur G, Sehgal A, Bhardwaj S, Singh S, Buhas C, Judea-Pusta C, Uivarosan D, Munteanu MA, Bungau S (2021b) Multifaceted role of matrix metalloproteinases in neurodegenerative diseases: pathophysiological and therapeutic perspectives. Int J Mol Sci 22(3):1413. https://doi.org/10.3390/ijms22031413

Article  CAS  PubMed  PubMed Central  Google Scholar 

Boyle PA, Yu L, Mottola G, Innes K, Bennett DA (2022) Degraded rationality and suboptimal decision-making in old age: a silent epidemic with major economic and public health implications. Public Policy Aging Report 32(2):45–50. https://doi.org/10.1093/ppar/prac003

Article  PubMed  Google Scholar 

Boyne AF, Ellman GL (1972) A methodology for analysis of tissue Sulfhahydral components. Anal Biochem 46:639–653. https://doi.org/10.1016/0003-2697(72)90335-1

Article  CAS  PubMed  Google Scholar 

Butterfield DA, Boyd-Kimball D (2018) Oxidative stress, amyloid-β peptide, and altered key molecular pathways in the pathogenesis and progression of Alzheimer’s disease. J Alzheimers Dis 62(3):1345–1367. https://doi.org/10.3233/JAD-170543

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen BH, Ahn JH, Park JH, Song M, Kim H, Lee TK, Lee JC, Kim YM, Hwang IK, Kim DW, Lee CH (2018) Rufinamide, an antiepileptic drug, improves cognition and increases neurogenesis in the aged gerbil hippocampal dentate gyrus via increasing expressions of IGF-1, IGF-1R and p-CREB Chemico-biological interaction. Chem Biol interact 286:71–77. https://doi.org/10.1016/j.cbi.2018.03.007

Article  CAS  PubMed  Google Scholar 

Choi YS, Lee B, Cho HY, Reyes IB, Pu XA, Saido TC, Hoyt KR, Obrietan K (2009) CREB is a key regulator of striatal vulnerability in chemical and genetic models of Huntington’s disease. Neurobiol Dis 36(2):259–268. https://doi.org/10.1016/j.nbd.2009.07.014

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ellman GL, Courtney KD, Valentino A, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95. https://doi.org/10.1016/0006-2952(61)90145-9

Article  CAS  PubMed  Google Scholar 

Goth L (1991) A simple method for determination of serum catalase activity and revision of reference range. Clin Chim Acta 196(2–3):143–151. https://doi.org/10.1016/0009-8981(91)90067-M

Article  CAS  PubMed  Google Scholar 

Grisham MB, Benoit JN, Granger DN (1990) Assessment of leukocyte involvement during ischemia and reperfusion of intestine. Methods Enzymol 186:729–742. https://doi.org/10.1016/0076-6879(90)86172-R

Article  CAS  PubMed  Google Scholar 

Guo XD, Sun GL, Zhou TT, Wang YY, Xu X, Shi XF, Zhu ZY, Rukachaisirikul V, Hu LH, Shen X (2017) LX2343 alleviates cognitive impairments in AD model rats by inhibiting oxidative stress-induced neuronal apoptosis and tauopathy. Acta Pharmacol Sin 38(8):1104–1119. https://doi.org/10.1038/aps.2016.128

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guo C, Liu Y, Fang MS, Li Y, Li W, Mahaman YAR, Zeng K, Xia Y, Ke D, Liu R, Wang JZ (2020) ω-3PUFAs improve cognitive impairments through Ser133 phosphorylation of CREB upregulating BDNF/TrkB signal in schizophrenia. Neurotherapeutics 17:1271–1286. https://doi.org/10.1007/s13311-020-00859-w

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gutiérrez-Rexach J, Schatz S (2016) Cognitive impairment and pragmatics. Springer Plus 5(1):1–5. https://doi.org/10.1186/s40064-016-1759-7

Article  Google Scholar 

Haque RU, Levey AI (2019) Alzheimer’s disease: a clinical perspective and future nonhuman primate research opportunities. Proc Natl Acad Sci 116(52):26224–26229. https://doi.org/10.1073/pnas.1912954116

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huber CM, Yee C, May T, Dhanala A, Mitchell CS (2018) Cognitive decline in preclinical Alzheimer’s disease: amyloid-beta versus tauopathy. J Alzheimers Dis 61(1):265–281. https://doi.org/10.1073/pnas.1912954116

Article  CAS  PubMed  Google Scholar 

Kamat PK, Kalani A, Rai S, Tota SK, Kumar A, Ahmad AS (2016) Streptozotocin intracerebroventricular-induced neurotoxicity and brain insulin resistance: a therapeutic intervention for treatment of sporadic Alzheimer’s disease (sAD)-like pathology. Mol Neurobiol 53:4548–4562. https://doi.org/10.1007/s12035-015-9384-y

Article  CAS  PubMed  Google Scholar 

Kameyama T, Nabeshima T, Kozawa T (1986) Step-down-type passive avoidance- and escape-learning method. Suitability for experimental amnesia models. J Pharmacol Methods 16(1):39–52. https://doi.org/10.1016/0160-5402(86)90027-6

Article  CAS  PubMed  Google Scholar 

Kang BW, Kim F, Cho JY, Kim S, Rhee J, Choung JJ (2022) Phosphodiesterase 5 inhibitor mirodenafil ameliorates Alzheimer-like pathology and symptoms by multimodal actions. Alzheimer’s Res Therapy 14(1):1–17. https://doi.org/10.1186/s13195-022-01034-3

Article  CAS  Google Scholar 

Kaur A, Singh TG, Khan H, Kumar M, Singh N, Abdel-Daim MM (2022) Neuroprotective effect of Piclamilast-induced post-ischemia pharmacological treatment in mice. Neurochem Res 47(8):2230–2243. https://doi.org/10.1007/s11064-022-03609-w

Article  CAS  PubMed  Google Scholar 

Khalifa M, Abdelsalam RM, Safar MM, Zaki HF (2022) Phosphodiesterase (PDE) III inhibitor, Cilostazol, improved memory impairment in aluminum chloride-treated rats: modulation of cAMP/CREB pathway. Inflammopharmacology. https://doi.org/10.1007/s10787-022-01010-1

Article  PubMed  PubMed Central  Google Scholar 

Kular L, Needhamsen M, Adzemovic MZ, Kramarova T, Gomez-Cabrero D, Ewing E, Piket E, Tegnér J, Beck S, Piehl F, Brundin L (2019) Neuronal methylome reveals CREB-associated neuro-axonal impairment in multiple sclerosis. Clin Epigenet 11(1):1–20. https://doi.org/10.1186/s13148-019-0678-1

Article  CAS  Google Scholar 

Kumar A, Singh N (2017a) Inhibitor of Phosphodiestearse-4 improves memory deficits, oxidative stress, neuroinflammation and neuropathological alterations in mouse models of dementia of Alzheimer’s type. Biomed Pharmacother 88:698–707. https://doi.org/10.1016/j.biopha.2017.01.059

Article  CAS  PubMed  Google Scholar 

Kumar A, Singh N (2017b) Calcineurin inhibitors improve memory loss and neuropathological changes in mouse model of dementia. Pharmacol Biochem Behav 153:147–159. https://doi.org/10.1016/j.pbb.2016.12.018

Article  CAS  PubMed 

Comments (0)

No login
gif