He F, Wang Y, Xiu Y, Zhang Y, Chen L: Artificial Intelligence in Prenatal Ultrasound Diagnosis. Front Med 8:729978, 2021
Drukker L, Sharma H, Karim JN, Droste R, Noble JA, Papageorghiou AT: Clinical workflow of sonographers performing fetal anomaly ultrasound scans: deep-learning-based analysis. Ultrasound Obstet Gynecol 60:759-765, 2022
Article CAS PubMed PubMed Central Google Scholar
Chen Z, Liu Z, Du M, Wang Z: Artificial Intelligence in Obstetric Ultrasound: An Update and Future Applications. Front Med 8:733468, 2021
Dawood Y, Buijtendijk MFJ, Shah H, Smit JA, Jacobs K, Hagoort J, Oostra RJ, Bourne T, van den Hoff MJB, de Bakker BS: Imaging fetal anatomy. Semin Cell Dev Biol 131:78-92, 2022
Bronshtein M, Gover A, Zimmer EZ: Sonographic definition of the fetal situs. Obstet Gynecol 99:1129-1130, 2002
Salomon LJ, Alfirevic Z, Berghella V, Bilardo C, Hernandez-Andrade E, Johnsen SL, Kalache K, Leung KY, Malinger G, Munoz H, Prefumo F, Toi A, Lee W; ISUOG Clinical Standards Committee: Practice guidelines for performance of the routine mid-trimester fetal ultrasound scan. Ultrasound Obstet Gynecol 37:116-126, 2011
Article CAS PubMed Google Scholar
Durfee SM, Benson CB, Adams SR, Ecker J, House M, Jennings R, Katz D, Pettigrew C, Wolfberg A: Postnatal Outcome of Fetuses With the Prenatal Diagnosis of Gastroschisis. J Ultrasound Med 32:407-412, 2013
Wilson RD, Johnson MP: Congenital Abdominal Wall Defects: An Update. Fetal Diagn Ther 19:385-398, 2004
Revels JW, Wang SS, Nasrullah A, Revzin M, Iyer RS, Deutsch G, Katz DS, Moshiri M: An Algorithmic Approach to Complex Fetal Abdominal Wall Defects. Am J Roentgenol 214:218-231, 2020
Suresh S, Suresh I: The Second Trimester Obstetric Scan (7 + 3 = 10): A Rational Approach (Including the ‘Rule of Three’). J Fetal Med 1:59-73, 2014
Daltro P, Fricke BL, Kline-Fath BM, Werner H, Rodrigues L, Fazecas T, Domingues R, Donnelly LF: Prenatal MRI of Congenital Abdominal and Chest Wall Defects. Am J Roentgenol 184:1010-1016, 2005
Zhang J, Xiao S, Zhu Y, Zhang Z, Cao H, Xie M, Zhang L. Advances in the Application of Artificial Intelligence in Fetal Echocardiography. J Am Soc Echocardiogr. 2024 May;37(5):550-561.
Enache IA, Iovoaica-Rămescu C, Ciobanu ȘG, Berbecaru EIA, Vochin A, Băluță ID, Istrate-Ofițeru AM, Comănescu CM, Nagy RD, Iliescu DG. Artificial Intelligence in Obstetric Anomaly Scan: Heart and Brain. Life (Basel). 2024 Jan 23;14(2):166.
PubMed PubMed Central Google Scholar
Frisch EH, Jain A, Jin M, Duhaime EP, Malshe A, Corey S, Allen R, Duggan NM, Fischetti CE. Artificial Intelligence to Determine Fetal Sex. Am J Perinatol. 2024 Oct;41(13):1836-1840.
Kim B, Kim KC, Park Y, Kwon J-Y, Jang J, Seo JK: Machine-learning-based automatic identification of fetal abdominal circumference from ultrasound images. Physiol Meas 39:105007, 2018
Sarno L, Neola D, Carbone L, Saccone G, Carlea A, Miceli M, Iorio GG, Mappa I, Rizzo G, Girolamo RD, D'Antonio F, Guida M, Maruotti GM: Use of artificial intelligence in obstetrics: not quite ready for prime time. Am J Obstet Gynecol MFM 5:100792, 2023
Krishna TB, Kokil P: Automated classification of common maternal fetal ultrasound planes using multi-layer perceptron with deep feature integration. Biomed Signal Process Control 86:105283, 2023
Krishna TB, Kokil P: Standard fetal ultrasound plane classification based on stacked ensemble of deep learning models. Expert Syst Appl 238:122153, 2024
Chen H, Ni D, Qin J, Li S, Yang X, Wang T, Heng PA: Standard Plane Localization in Fetal Ultrasound via Domain Transferred Deep Neural Networks. IEEE J Biomed Health Inform 19:1627-1636, 2015
Krishna TB, Kokil P: Integration of a Deep Convolutional Neural Network With Adaptive Channel Weight Technique for Automated Identification of Standard Fetal Biometry Planes. IEEE Trans Instrum Meas 73:1-11, 2024
Płotka S, Klasa A, Lisowska A, Seliga-Siwecka J, Lipa M, Trzciński T, Sitek A: Deep learning fetal ultrasound video model match human observers in biometric measurements. Phys Med Biol 67:045013, 2022
Bano S, Dromey B, Vasconcelos F, Napolitano R, David AL, Peebles DM, Stoyanov D: AutoFB: Automating fetal biometry estimation from standard ultrasound planes. Med Image Comput Comput Assist Interv 24:228-238, 2021
Płotka S, Włodarczyk T, Klasa A, Lipa M, Sitek A, Trzciński T: FetalNet: Multi-task deep learning framework for fetal ultrasound biometric measurements. Neural Inf Process 28:257-265, 2021
Ungureanu A, Marcu AS, Patru CL, Ruican D, Nagy R, Stoean R, Stoean C, Iliescu DG: Learning deep architectures for the interpretation of first-trimester fetal echocardiography (LIFE) - a study protocol for developing an automated intelligent decision support system for early fetal echocardiography. BMC Pregnancy Childbirth 23:20, 2023
Article PubMed PubMed Central Google Scholar
Lin M, He X, Guo H, He M, Zhang L, Xian J, Lei T, Xu Q, Zheng J, Feng J, Hao C, Yang Y, Wang N, Xie H: Use of real-time artificial intelligence in detection of abnormal image patterns in standard sonographic reference planes in screening for fetal intracranial malformations. Ultrasound Obstet Gynecol 59:304-316, 2022
Article CAS PubMed Google Scholar
Altman DG: Practical Statistics for Medical Research. Chapman and Hall/CRC, 1990
Şerbănescu MS, Manea NC, Streba L, Belciug S, Pleşea IE, Pirici I, Bungărdean RM, Pleşea RM: Automated Gleason grading of prostate cancer using transfer learning from general-purpose deep-learning networks. Rom J Morphol Embryol 61:149-155, 2020
Article PubMed PubMed Central Google Scholar
Şerbănescu MS, Oancea CN, Streba CT, Pleşea IE, Pirici D, Streba L, Pleşea RM: Agreement of two pre-trained deep-learning neural networks built with transfer learning with six pathologists on 6000 patches of prostate cancer from Gleason2019 Challenge. Rom J Morphol Embryol 61:513-519, 2020
Article PubMed PubMed Central Google Scholar
Bungărdean RM, Şerbănescu MS, Streba CT, Crişan M: Deep learning with transfer learning in pathology. Case study: classification of basal cell carcinoma. Rom J Morphol Embryol 62:1017-1028, 2021
Șerbănescu MS, Bungărdean RM, Georgiu C, Crișan M: Nodular and Micronodular Basal Cell Carcinoma Subtypes Are Different Tumors Based on Their Morphological Architecture and Their Interaction with the Surrounding Stroma. Diagnostics (Basel) 12:1636, 2022
Mămuleanu M, Urhuț CM, Săndulescu LD, Kamal C, Pătrașcu AM, Ionescu AG, Șerbănescu MS, Streba CT: An Automated Method for Classifying Liver Lesions in Contrast-Enhanced Ultrasound Imaging Based on Deep Learning Algorithms. Diagnostics (Basel) 13:1062, 2023
Mămuleanu M, Șerbănescu M, Urhuț CM, Săndulescu LD, Ionescu M, Streba CT: Liver lesion segmentation in contrast-enhanced ultrasound using deep learning algorithms. Ultrasound Med Biol 48(Suppl 1):S6, 2022
Nica RE, Șerbănescu MS, Florescu LM, Camen GC, Streba CT, Gheonea IA: Deep Learning: a Promising Method for Histological Class Prediction of Breast Tumors in Mammography. J Digit Imaging 34:1190-1198, 2021
Article PubMed PubMed Central Google Scholar
Bungărdean RM, Şerbănescu MS, Colosi HA, Crișan M: High-frequency ultrasound: an essential non-invasive tool for the pre-therapeutic assessment of basal cell carcinoma. Rom J Morphol Embryol 62:545-551, 2021
Jang J, Park Y, Kim B, Lee SM, Kwon J-Y, Seo JK: Automatic Estimation of Fetal Abdominal Circumference From Ultrasound Images. IEEE J Biomed Health Inform 22:1512-1520, 2018
Comments (0)