Automating Prostate Cancer Grading: A Novel Deep Learning Framework for Automatic Prostate Cancer Grade Assessment using Classification and Segmentation

Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians 2018;68:394–424.

PubMed  Google Scholar 

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians 2021;71:209–49.

PubMed  Google Scholar 

Sanda MG, Cadeddu JA, Kirkby E, Chen RC, Crispino T, Fontanarosa J, et al. Clinically localized prostate cancer: AUA/ASTRO/SUO guideline. Part II: recommended approaches and details of specific care options. The Journal of Urology 2018;199:990–7.

Article  PubMed  Google Scholar 

Sanda MG, Cadeddu JA, Kirkby E, Chen RC, Crispino T, Fontanarosa J, et al. Clinically localized prostate cancer: AUA/ASTRO/SUO guideline. Part I: risk stratification, shared decision making, and care options. The Journal of Urology 2018;199:683–90.

Article  PubMed  Google Scholar 

Samaratunga H, Delahunt B, Yaxley J, Srigley JR, Egevad L. From Gleason to International Society of Urological Pathology (ISUP) grading of prostate cancer. Scandinavian Journal of Urology 2016;50:325–9.

Article  CAS  PubMed  Google Scholar 

Faraj SF, Bezerra SM, Yousefi K, Fedor H, Glavaris S, Han M, et al. Clinical validation of the 2005 ISUP Gleason grading system in a cohort of intermediate and high risk men undergoing radical prostatectomy. PloS One 2016;11:e0146189.

Article  PubMed  PubMed Central  Google Scholar 

Epstein JI. An update of the Gleason grading system. The Journal of Urology 2010;183:433–40.

Article  PubMed  Google Scholar 

Li Y, Huang M, Zhang Y, Chen J, Xu H, Wang G, et al. Automated gleason grading and gleason pattern region segmentation based on deep learning for pathological images of prostate cancer. IEEE Access 2020;8:117714–25.

Article  Google Scholar 

Ström P, Kartasalo K, Olsson H, Solorzano L, Delahunt B, Berney DM, et al. Artificial intelligence for diagnosis and grading of prostate cancer in biopsies: a population-based, diagnostic study. The Lancet Oncology 2020;21:222–32.

Article  PubMed  Google Scholar 

Ardila D, Kiraly AP, Bharadwaj S, Choi B, Reicher JJ, Peng L, et al. End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. Nature Medicine 2019;25:954–61.

Article  CAS  PubMed  Google Scholar 

Coudray N, Ocampo PS, Sakellaropoulos T, Narula N, Snuderl M, Fenyö D, et al. Classification and mutation prediction from non–small cell lung cancer histopathology images using deep learning. Nature Medicine 2018;24:1559–67.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Murugappan M, Prakash N.B, Jeya R, Mohanarathinam A, Hemalakshmi G.R, Mufti Mahmud, A novel few-shot classification framework for diabetic retinopathy detection and grading, Measurement, 2022:200:111485.

Article  Google Scholar 

Murugappan, M., Bourisly, A.K., Prakash, N.B. et al. Automated semantic lung segmentation in chest CT images using deep neural network. Neural Computing and Applications, 2023:35:15343–15364.

Article  CAS  PubMed  Google Scholar 

Sarmun R, Kabir S, Prithula J, Alqahtani A, Zoghoul SB, Al-Hashimi I, et al. Enhancing intima-media complex segmentation with a multi-stage feature fusion-based novel deep learning framework. Engineering Applications of Artificial Intelligence 2024;133:108050.

Article  Google Scholar 

Bushra F, Chowdhury MEH, Sarmun R, Kabir S, Said M, Zoghoul SB, et al. Deep learning in computed tomography pulmonary angiography imaging: A dual-pronged approach for pulmonary embolism detection. Expert Systems with Applications 2024;245:123029.

Article  Google Scholar 

Khan MM, Chowdhury MEH, Arefin ASMS, Podder KK, Hossain MSA, Alqahtani A, Murugappan M, Khandakar A, Mushtak A, Nahiduzzaman M. A Deep Learning-Based Automatic Segmentation and 3D Visualization Technique for Intracranial Hemorrhage Detection Using Computed Tomography Images. Diagnostics. 2023; 13(15):253.

Article  Google Scholar 

Hemalakshmi, G.R., Murugappan, M., Sikkandar, M.Y. et al. Automated retinal disease classification using hybrid transformer model (SViT) using optical coherence tomography images. Neural Computing and Applications, 2024: 36: 9171–9188

Article  Google Scholar 

Li J, Li W, Gertych A, Knudsen BS, Speier W, Arnold CW. An attention-based multi-resolution model for prostate whole slide image classification and localization. ArXiv Preprint ArXiv:190513208 2019. https://doi.org/10.48550/arXiv.1905.13208.

Xu H, Park S, Hwang TH. Computerized classification of prostate cancer gleason scores from whole slide images. IEEE/ACM Transactions on Computational Biology and Bioinformatics 2019;17:1871–82.

Article  Google Scholar 

Xie H, Zhang Y, Wang J, Zhang J, Ma Y, Yang Z. Automated Prostate Cancer Diagnosis Based on Gleason Grading Using Convolutional Neural Network. ArXiv Preprint ArXiv:201114301 2020. https://doi.org/10.48550/arXiv.2011.14301.

Ilse M, Tomczak J, Welling M. Attention-based deep multiple instance learning. International conference on machine learning, PMLR; 2018, p. 2127–36.

Nguyen K, Sabata B, Jain AK. Prostate cancer grading: Gland segmentation and structural features. Pattern Recognition Letters 2012;33:951–61.

Article  Google Scholar 

Gorelick L, Veksler O, Gaed M, Gómez JA, Moussa M, Bauman G, et al. Prostate histopathology: Learning tissue component histograms for cancer detection and classification. IEEE Transactions on Medical Imaging 2013;32:1804–18.

Article  PubMed  Google Scholar 

Waliszewski P, Wagenlehner F, Gattenloehner S, Weidner W. On the relationship between tumor structure and complexity of the spatial distribution of cancer cell nuclei: a fractal geometrical model of prostate carcinoma. The Prostate 2015;75:399–414.

Article  PubMed  Google Scholar 

Huang M, Han H, Wang H, Li L, Zhang Y, Bhatti UA. A clinical decision support framework for heterogeneous data sources. IEEE Journal of Biomedical and Health Informatics 2018;22:1824–33.

Article  PubMed  Google Scholar 

Li Y, Niu S, Ji Z, Fan W, Yuan S, Chen Q. Automated choroidal neovascularization detection for time series SD-OCT images. International Conference on Medical Image Computing and Computer-Assisted Intervention, Springer; 2018, p. 381–8.

Campanella G, Hanna MG, Geneslaw L, Miraflor A, Werneck Krauss Silva V, Busam KJ, et al. Clinical-grade computational pathology using weakly supervised deep learning on whole slide images. Nature Medicine 2019;25:1301–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Marrón-Esquivel JM, Duran-Lopez L, Linares-Barranco A, Dominguez-Morales JP. A comparative study of the inter-observer variability on Gleason grading against Deep Learning-based approaches for prostate cancer. Computers in Biology and Medicine 2023;159:106856.

Article  PubMed  Google Scholar 

Arvaniti E, Fricker KS, Moret M, Rupp N, Hermanns T, Fankhauser C, et al. Automated Gleason grading of prostate cancer tissue microarrays via deep learning. Scientific Reports 2018;8:12054.

Article  PubMed  PubMed Central  Google Scholar 

Ing N, Ma Z, Li J, Salemi H, Arnold C, Knudsen BS, et al. Semantic segmentation for prostate cancer grading by convolutional neural networks. Medical Imaging 2018: Digital Pathology, vol. 10581, SPIE; 2018, p. 343–55.

Bulten W, Pinckaers H, van Boven H, Vink R, de Bel T, van Ginneken B, et al. Automated deep-learning system for Gleason grading of prostate cancer using biopsies: a diagnostic study. The Lancet Oncology 2020;21:233–41.

Article  PubMed  Google Scholar 

Singhal N, Soni S, Bonthu S, Chattopadhyay N, Samanta P, Joshi U, et al. A deep learning system for prostate cancer diagnosis and grading in whole slide images of core needle biopsies. Scientific Reports 2022;12:3383.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bulten W, Kartasalo K, Chen P-HC, Ström P, Pinckaers H, Nagpal K, et al. Artificial intelligence for diagnosis and Gleason grading of prostate cancer: the PANDA challenge. Nature Medicine 2022;28:154–63.

Article  CAS  PubMed  PubMed Central  Google Scholar 

FAM_TARO. https://www.kaggle.com/competitions/prostate-cancer-grade-assessment/discussion/169143 20/05/2024.

Kabir S, Vranic S, Al Saady RM, Khan MS, Sarmun R, Alqahtani A, et al. The utility of a deep learning-based approach in Her-2/neu assessment in breast cancer. Expert Systems with Applications 2024;238:122051.

Article  Google Scholar 

Shorten C, Khoshgoftaar TM. A survey on image data augmentation for deep learning. Journal of Big Data 2019;6:1–48.

Article  Google Scholar 

Tellez D, Litjens G, Bándi P, Bulten W, Bokhorst J-M, Ciompi F, et al. Quantifying the effects of data augmentation and stain color normalization in convolutional neural networks for computational pathology. Medical Image Analysis 2019;58:101544.

Article  PubMed  Google Scholar 

Rahman T, Chowdhury MEH, Khandakar A, Islam KR, Islam KF, Mahbub ZB, et al. Transfer learning with deep convolutional neural network (CNN) for pneumonia detection using chest X-ray. Applied Sciences 2020;10:3233.

Article  CAS  Google Scholar 

Huang G, Liu Z, Van Der Maaten L, Weinberger KQ. Densely connected convolutional networks. Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, p. 4700–8.

Tan M, Le Q. Efficientnet: Rethinking model scaling for convolutional neural networks. International conference on machine learning, PMLR; 2019, p. 6105–14.

Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z. Rethinking the inception architecture for computer vision. Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, p. 2818–26.

Comments (0)

No login
gif