Adamantidis AR, Gutierrez Herrera C, Gent TC (2019) Oscillating circuitries in the sleeping brain. Nat Rev Neurosci 20:746–762
Allada R, Cirelli C, Sehgal A (2017) Molecular mechanisms of sleep homeostasis in flies and mammals. Csh Perspect Biol 9:a027730
Anderson MP, Mochizuki T, Xie J, Fischler W, Manger JP, Talley EM, Scammell TE, Tonegawa S (2005) Thalamic Cav3.1 T-type Ca2+ channel plays a crucial role in stabilizing sleep. Proc Natl Acad Sci USA 102:1743–1748
CAS PubMed PubMed Central Google Scholar
Arnold EC, Soler-Llavina G, Kambara K, Bertrand D (2023) The importance of ligand gated ion channels in sleep and sleep disorders. Biochem Pharmacol 212:115532
Ashbrook LH, Krystal AD, Fu YH, Ptácek LJ (2020) Genetics of the human circadian clock and sleep homeostat. Neuropsychopharmacol 45:45–54
Astori S, Wimmer RD, Prosser HM, Corti C, Corsi M, Liaudet N, Volterra A, Franken P, Adelman JP, Luthi A (2011) The Ca(V)3.3 calcium channel is the major sleep spindle pacemaker in thalamus. Proc Natl Acad Sci USA 108:13823–13828
CAS PubMed PubMed Central Google Scholar
Atalar F, Acuner TT, Cine N, Oncu F, Yesilbursa D, Ozbek U, Turkcan S (2010) Two four-marker haplotypes on 7q36.1 region indicate that the potassium channel gene HERG1 (KCNH2, Kv11.1) is related to schizophrenia: a case control study. Behav Brain Func: BBF 6:1–11
Bagal SK, Marron BE, Owen RM, Storer RI, Swain NA (2015) Voltage gated sodium channels as drug discovery targets. Channels (Austin) 9:360–366
Ballester P, Richdale AL, Baker EK, Peiro AM (2020) Sleep in autism: a biomolecular approach to aetiology and treatment. Sleep Med Rev 54:101357
Beenhakker MP, Huguenard JR (2009) Neurons that fire together also conspire together: is normal sleep circuitry hijacked to generate epilepsy? Neuron 62:612–632
CAS PubMed PubMed Central Google Scholar
Benca RM, Obermeyer WH, Thisted RA, Gillin JC (1992) Sleep and psychiatric disorders. A meta-analysis. Arch Gen Psychiatr 49:651–668
Blum ID, Keles MF, Baz ES, Han E, Park K, Luu S, Issa H, Brown M, Ho MCW, Tabuchi M et al (2021) Astroglial calcium signaling encodes sleep need in drosophila. Curr Biol: CB 31(150–162):e157
Broicher T, Seidenbecher T, Meuth P, Munsch T, Meuth SG, Kanyshkova T, Pape HC, Budde T (2007) T-current related effects of antiepileptic drugs and a Ca2+ channel antagonist on thalamic relay and local circuit interneurons in a rat model of absence epilepsy. Neuropharmacology 53:431–446
Bruce HA, Kochunov P, Paciga SA, Hyde CL, Chen X, Xie Z, Zhang B, Xi HS, O’Donnell P, Whelan C et al (2017) Potassium channel gene associations with joint processing speed and white matter impairments in schizophrenia. Genes Brain Behav 16:515–521
Bushey D, Huber R, Tononi G, Cirelli C (2007) Drosophila Hyperkinetic mutants have reduced sleep and impaired memory. J Neurosci: Off J Soc Neurosci 27:5384–5393
Catterall WA (2000) Structure and regulation of voltage-gated Ca2+ channels. Annu Rev Cell Dev Biol 16:521–555
Catterall WA (2012) Voltage-gated sodium channels at 60: structure, function and pathophysiology. J Physiol 590:2577–2589
CAS PubMed PubMed Central Google Scholar
Catterall WA, Wisedchaisri G, Zheng N (2017) The chemical basis for electrical signaling. Nat Chem Biol 13:455–463
CAS PubMed PubMed Central Google Scholar
Chen Y, Lu J, Pan H, Zhang Y, Wu H, Xu K, Liu X, Jiang Y, Bao X, Yao Z et al (2003) Association between genetic variation of CACNA1H and childhood absence epilepsy. Ann Neurol 54:239–243
Cheong E, Shin HS (2014) T-type Ca2+ channels in absence epilepsy. Pflugers Arch 466:719–734
Cirelli C, Bushey D, Hill S, Huber R, Kreber R, Ganetzky B, Tononi G (2005) Reduced sleep in Drosophila Shaker mutants. Nature 434:1087–1092
Crunelli V, David F, Leresche N, Lambert RC (2014) Role for T-type Ca2+ channels in sleep waves. Pflugers Arch 466:735–745
Cui SY, Cui XY, Zhang J, Wang ZJ, Yu B, Sheng ZF, Zhang XQ, Shi XL, Zhang YH (2011) Ca(2)+ modulation in dorsal raphe plays an important role in NREM and REM sleep regulation during pentobarbital hypnosis. Brain Res 1403:12–18
David F, Schmiedt JT, Taylor HL, Orban G, Di Giovanni G, Uebele VN, Renger JJ, Lambert RC, Leresche N, Crunelli V (2013) Essential thalamic contribution to slow waves of natural sleep. J Neurosci: Off J Soc Neurosci 33:19599–19610
Deboer T, van Diepen HC, Ferrari MD, Van den Maagdenberg AM, Meijer JH (2013) Reduced sleep and low adenosinergic sensitivity in cacna1a R192Q mutant mice. Sleep 36:127–136
Delorme J, Wang L, Kuhn FR, Kodoth V, Ma J, Martinez JD, Raven F, Toth BA, Balendran V, Vega Medina A et al (2021) Sleep loss drives acetylcholine- and somatostatin interneuron-mediated gating of hippocampal activity to inhibit memory consolidation. Proc Natl Acad Sci USA 118:e2019318118
CAS PubMed PubMed Central Google Scholar
Derry CP, Duncan S (2013) Sleep and epilepsy. Epilepsy & Behav: E & B 26:394–404
Dhaibar H, Gautier NM, Chernyshev OY, Dominic P, Glasscock E (2019) Cardiorespiratory profiling reveals primary breathing dysfunction in Kcna1-null mice: Implications for sudden unexpected death in epilepsy. Neurobiol Dis 127:502–511
CAS PubMed PubMed Central Google Scholar
Dijk DJ (2009) Regulation and functional correlates of slow wave sleep. J Clin Sleep Med: JCSM: Off Publ Am Acad Sleep Med 5:S6-15
Douglas CL, Vyazovskiy V, Southard T, Chiu SY, Messing A, Tononi G, Cirelli C (2007) Sleep in Kcna2 knockout mice. BMC Biol 5:42
PubMed PubMed Central Google Scholar
Dravet C, Bureau M, Oguni H, Fukuyama Y, Cokar O (2005) Severe myoclonic epilepsy in infancy: Dravet syndrome. Adv Neurol 95:71–102
El Khoueiry C, Cabungcal JH, Rovo Z, Fournier M, Do KQ, Steullet P (2022) Developmental oxidative stress leads to T-type Ca(2+) channel hypofunction in thalamic reticular nucleus of mouse models pertinent to schizophrenia. Mol Psychiatr 27:2042–2051
Ernst WL, Zhang Y, Yoo JW, Ernst SJ, Noebels JL (2009) Genetic enhancement of thalamocortical network activity by elevating alpha 1g-mediated low-voltage-activated calcium current induces pure absence epilepsy. J Neurosci: Off J Soc Neurosci 29:1615–1625
Espinosa F, Marks G, Heintz N, Joho RH (2004) Increased motor drive and sleep loss in mice lacking Kv3-type potassium channels. Genes Brain Behav 3:90–100
Espinosa F, Torres-Vega MA, Marks GA, Joho RH (2008) Ablation of Kv3.1 and Kv3.3 potassium channels disrupts thalamocortical oscillations in vitro and in vivo. J Neurosci: Off J Soc Neurosci 28:5570–5581
Evans RM, Zamponi GW (2006) Presynaptic Ca2+ channels–integration centers for neuronal signaling pathways. Trends Neurosci 29:617–624
Feng G, Pang J, Yi X, Song Q, Zhang J, Li C, He G, Ping Y (2018a) Down-Regulation of KV4 channel in drosophila mushroom body neurons contributes to Abeta42-induced courtship memory deficits. Neuroscience 370:236–245
Feng G, Zhang J, Li M, Shao L, Yang L, Song Q, Ping Y (2018b) Control of sleep onset by shal/kv4 channels in Drosophila Circadian neurons. J Neurosci: Off J Soc Neurosci 38:9059–9071
Fenoglio-Simeone KA, Wilke JC, Milligan HL, Allen CN, Rho JM, Maganti RK (2009) Ketogenic diet treatment abolishes seizure periodicity and improves diurnal rhythmicity in epileptic Kcna1-null mice. Epilepsia 50:2027–2034
PubMed PubMed Central Google Scholar
Ferrarelli F (2021) Sleep abnormalities in schizophrenia: state of the art and next steps. Am J Psychiatr 178:903–913
Fu Y, Struyk A, Markin V, Cannon S (2011) Gating behaviour of sodium currents in adult mouse muscle recorded with an improved two-electrode voltage clamp. J Physiol-London 589:525–546
Gao K, Lin ZH, Wen SJ, Jiang YW (2022) Potassium channel
Comments (0)