A guide for asymmetric synthesis of morphine alkaloids

Herbert RB, Venter H, Pos S. Do mammals make their own morphine? Nat Prod Rep. 2000;17:317–22. https://doi.org/10.1039/A809409H.

Article  PubMed  CAS  Google Scholar 

Hudlicky T, Butora G, Fearnley SP, Gum AG, Stabile MR. A historical perspective of morphine syntheses. Stud Nat Products Chem. 1995;18:143–54. https://doi.org/10.1016/S1572-5995(96)80025-1.

Article  Google Scholar 

Sert€urner FW. U€ber das Morphium, eine neue salzf€ahige Grundlage, und die Mekons€aure, als Hauptbestandtheile des Opiums. Ann Phys Berl. 1817;55:56–89.

Article  Google Scholar 

King SJ, Reid C, Forbes K, Hanks G. A systematic review of oxycodone in the management of cancer pain. Palliat Med. 2011;25:454–70. https://doi.org/10.1177/0269216311401948.

Article  PubMed  Google Scholar 

Narcotic Drugs: Estimated World Requirements for 2020—Statistics for 2018. Vienna, Austria: International Narcotics Control Board; 2019.

Bradsher K. Shake-Up on Opium Island. New York Times; www.nytimes.com/2014/07/20/business/international/tasmania-big-supplier-to-drug-companiesfaceschanges.html (accessed July 20, 2014)

Wang M, Feng M, Tang B, Jiang X. Recent advances of desymmetrization protocol applied in natural product total synthesis. Tetrahedron Lett. 2014;55:7147–55. https://doi.org/10.1016/j.tetlet.2014.10.152.

Article  CAS  Google Scholar 

Manmade A, Dalzell HC, Howes JF, Razdan RK. (−)-4-Hydroxymorphinanones: their synthesis and analgesic activity. J Medicinal Chem. 1981;24:1437–40. https://doi.org/10.1021/jm00144a013.

Article  CAS  Google Scholar 

Robinson R. The Structural Relations of Natural Products. Oxford: Oxford University Press; 1955.

Google Scholar 

Reed JW, Hudlicky T. The quest for a practical synthesis of morphine alkaloids and their derivatives by chemoenzymatic methods. Acc Chem Res. 2015;48:674–87. https://doi.org/10.1021/ar500427k.

Article  PubMed  CAS  Google Scholar 

Gum A, Stabile M. In Studies in Natural Products Chemistry. 18. Amsterdam: Elsevier; 1996. p. 43–154.

Google Scholar 

Novak BH, Hudlicky T, Reed JW, Mulzer J, Trauner D. Morphine synthesis and biosynthesis - an update. Curr Org Chem. 2000;4:343–62. https://doi.org/10.2174/1385272003376292.

Article  CAS  Google Scholar 

Blakemore PR, White JD. Morphine, the proteus of organic molecules. Chem Commun 2002;2002:1159–68. https://doi.org/10.1039/B111551K.

Article  Google Scholar 

Zezula J, Hudlicky T. Recent progress in the synthesis of morphine alkaloids. Synlett. 2005;2005:388–405. https://doi.org/10.1055/s-2005-862383.

Article  CAS  Google Scholar 

Taber DF, Neubert TD, Schlecht MF, Taber DF. Chapter 11 The enantioselective synthesis of morphine. Strateg Tactics Org Synth. 2004;5:353–89. https://doi.org/10.1016/S1874-6004(04)80034-0.

Article  CAS  Google Scholar 

Chida N. Recent advances in the synthesis of morphine and related alkaloids. Top Curr Chem. 2010;299:1–28. https://doi.org/10.1007/128_2010_73.

Article  CAS  Google Scholar 

Rinner U, Hudlicky T. Synthesis of morphine alkaloids and derivatives. Top Curr Chem. 2012;309:33–66. https://doi.org/10.1007/128_2011_133.

Article  PubMed  CAS  Google Scholar 

Li QL, Zhang HB. Research progress on the synthesis of morphine alkaloids. Chin J Org Chem. 2017;37:1629–52. https://doi.org/10.6023/cjoc201702048.

Article  CAS  Google Scholar 

Gates M, Tschudi G. The synthesis of Morphine. J Am Chem Soc. 1952;74:1109–10. https://doi.org/10.1021/ja01124a538.

Article  CAS  Google Scholar 

Gates M, Tschudi G. The synthesis of morphine. J Am Chem Soc. 1956;78:1380–93. https://doi.org/10.1021/ja01588a033.

Article  CAS  Google Scholar 

Beyerman HC, van Berkel J, Lie TS, Maat L, Wessels JCM. Synthesis of racemic and optically active codeine and morphine via the N-formylnordihydrothebainones. Rrciwil. J R Netlirrlmds Clieniicul Soc. 1978;97:127–9. https://doi.org/10.1002/recl.19780970504.

Article  CAS  Google Scholar 

Lie TS, Maat L, Beyerman HC. Synthesis of racemic and chiral codeine and morphine via the dihydrothebainones. (Chemistry of Opium Alkaloids, Part XI). Recl Des Trav Chimiques Des Pays-Bas. 2010;98:419–20. https://doi.org/10.1002/recl.19790980612.

Article  Google Scholar 

Rice K, Brossi A. expedient synthesis of racemic and optically active N-norreticuline and N-substituted and 6’-bromo-N-norreticulines. J Org Chem. 1980;45:592–601. https://doi.org/10.1021/jo01292a008.

Article  CAS  Google Scholar 

White JD, Caravatti G, Kline TB, Edstrom E, Rice KC, Brossi A. Biomimetic total synthesis of (−)-codeine. Tetrahedron. 1983;39:2393–7. https://doi.org/10.1016/S0040-4020(01)91965-9.

Article  CAS  Google Scholar 

Mulzer J, Dürner G, Trauner D. Formal total synthesis of (—)-morphine by cuprate conjugate addition. Angew Chem Int Ed Engl. 1996;35:2830–2. https://doi.org/10.1002/anie.199628301.

Article  CAS  Google Scholar 

Endoma MA, Bui VP, Hansen J, Hudlicky T. Medium-scale preparation of useful metabolites of aromatic compounds via whole-cell fermentation with recombinant organisms. Org Process Res Dev. 2002;6:525–32. https://doi.org/10.1021/op020013s.

Article  CAS  Google Scholar 

Omori A, Finn K, Leisch H, Carroll R, Hudlicky T. Chemoenzymatic total synthesis of (+)-codeine by sequential intramolecular heck cyclizations via C-B-D ring construction. Synlett. 2007;2007:2859–62. https://doi.org/10.1055/s-2007-990833.

Article  CAS  Google Scholar 

Leisch H, Omori AT, Finn KJ, Gilmet J, Bissett T, Ilceski D, Hudlický T. Chemoenzymatic enantiodivergent total syntheses of (+)- and (−)-codeine. Tetrahedron. 2009;65:9862–75. https://doi.org/10.1016/j.tet.2009.09.052.

Article  CAS  Google Scholar 

Varghese V, Hudlicky T. Total synthesis of dihydrocodeine and hydrocodone via a double claisen rearrangement and C-10/C-11 closure strategy. Synlett. 2013;24:369–74. https://doi.org/10.1055/S-0032-1318114.

Article  CAS  Google Scholar 

Endoma-Arias MA, Hudlicky JR, Simionescu R, Hudlicky T. Chemoenzymatic formal total synthesis of ent-codeine and other morphinans via nitrone cycloadditions and/or radical cyclizations. comparison of strategies for control of C-9/C-14 stereogenic centers. Adv Synth Catal. 2014;356:333–9. https://doi.org/10.1002/adsc.201400016.

Article  CAS  Google Scholar 

Varghese V, Hudlicky T. Short chemoenzymatic total synthesis of ent -hydromorphone: an oxidative dearomatization/intramolecular [4+2] cycloaddition/amination sequence. Angew Chem Int Ed Engl. 2014;53:4355–8. https://doi.org/10.1002/anie.201400286.

Article  PubMed  CAS  Google Scholar 

Taber DF, Neubert TD, Rheingold AL. Synthesis of (−)-morphine. J Am Chem Soc. 2002;124:12416–7. https://doi.org/10.1021/ja027882h.

Article  PubMed  CAS  Google Scholar 

Davis WA. Etherification of derivatives of β-naphthol. J Chem Soc Trans. 1900;77:33–45. https://doi.org/10.1039/CT9007700033.

Article  CAS  Google Scholar 

Horn AS, Grol CJ, Dijkstra D, Mulder AH. Facile syntheses of potent dopaminergic agonists and their effects on neurotransmitter release. J Medicinal Chem. 1978;21:825–8. https://doi.org/10.1021/jm00206a023.

Article  CAS  Google Scholar 

McDermed JD, McKenzie GM, Phillips AP. Synthesis and pharmacology of some 2-aminotetralins. Dopamine receptor agonists. J Medicinal Chem. 1975;18:362–7. https://doi.org/10.1021/jm00238a008.

Article  CAS  Google Scholar 

Kimishima A, Umihara H, Mizoguchi A, Yokoshima S, Fukuyama T. Synthesis of (−)- oxycodone. Org Lett. 2014;16:6244–7. https://doi.org/10.1021/ol503175n.

Article  PubMed  CAS  Google Scholar 

Umihara H, Yokoshima S, Inoue M, Fukuyama T. Total synthesis of (−)-morphine. Chem-A Eur J. 2017;23:6993–5.

Comments (0)

No login
gif