Candida albicans Virulence Traits in Commensalism and Disease

Wheeler ML, Limon JJ, Bar AS, Leal CA, Gargus M, Tang J, et al. Immunological consequences of intestinal fungal dysbiosis. Cell Host Microbe. 2016;19(6):865–73. https://doi.org/10.1016/j.chom.2016.05.003.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lopez-Medina E, Fan D, Coughlin LA, Ho EX, Lamont IL, Reimmann C, et al. Candida albicans inhibits pseudomonas aeruginosa virulence through suppression of pyochelin and pyoverdine biosynthesis. PLoS Pathog. 2015;11(8):e1005129. https://doi.org/10.1371/journal.ppat.1005129.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tso GHW, Reales-Calderon JA, Tan ASM, Sem X, Le GTT, Tan TG, et al. Experimental evolution of a fungal pathogen into a gut symbiont. Science. 2018;362(6414):589–95. https://doi.org/10.1126/science.aat0537.

Article  CAS  PubMed  Google Scholar 

Leonardi I, Gao IH, Lin WY, Allen M, Li XV, Fiers WD, et al. Mucosal fungi promote gut barrier function and social behavior via Type 17 immunity. Cell. 2022;185(5):831–46 e14. https://doi.org/10.1016/j.cell.2022.01.017.

Shao TY, Kakade P, Witchley JN, Frazer C, Murray KL, Ene IV, et al. Candida albicans oscillating UME6 expression during intestinal colonization primes systemic Th17 protective immunity. Cell Rep. 2022;39(7): 110837. https://doi.org/10.1016/j.celrep.2022.110837.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Doron I, Leonardi I, Li XV, Fiers WD, Semon A, Bialt-DeCelie M, et al. Human gut mycobiota tune immunity via CARD9-dependent induction of anti-fungal IgG antibodies. Cell. 2021;184(4):1017-31 e14. https://doi.org/10.1016/j.cell.2021.01.016.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shao TY, Ang WXG, Jiang TT, Huang FS, Andersen H, Kinder JM, et al. Commensal Candida albicans Positively Calibrates Systemic Th17 Immunological Responses. Cell Host Microbe. 2019;25(3):404-17e6. https://doi.org/10.1016/j.chom.2019.02.004.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Markey L, Shaban L, Green ER, Lemon KP, Mecsas J, Kumamoto CA. Pre-colonization with the commensal fungus Candida albicans reduces murine susceptibility to Clostridium difficile infection. Gut Microbes. 2018;9(6):497–509. https://doi.org/10.1080/19490976.2018.1465158.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Denning DW. Global incidence and mortality of severe fungal disease. Lancet Infect Dis. 2024. https://doi.org/10.1016/S1473-3099(23)00692-8.

Article  PubMed  Google Scholar 

Fukazawa EI, Witkin SS, Robial R, Vinagre JG, Baracat EC, Linhares IM. Influence of recurrent vulvovaginal candidiasis on quality of life issues. Arch Gynecol Obstet. 2019;300(3):647–50. https://doi.org/10.1007/s00404-019-05228-3.

Article  PubMed  Google Scholar 

Li XV, Leonardi I, Iliev ID. Gut mycobiota in immunity and inflammatory disease. Immunity. 2019;50(6):1365–79. https://doi.org/10.1016/j.immuni.2019.05.023.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fisher MC, Denning DW. The WHO fungal priority pathogens list as a game-changer. Nat Rev Microbiol. 2023;21(4):211–2. https://doi.org/10.1038/s41579-023-00861-x.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alves R, Barata-Antunes C, Casal M, Brown AJP, Van Dijck P, Paiva S. Adapting to survive: how candida overcomes host-imposed constraints during human colonization. PLoS Pathog. 2020;16(5): e1008478. https://doi.org/10.1371/journal.ppat.1008478.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Anderson DJ, Marathe J, Pudney J. The structure of the human vaginal stratum corneum and its role in immune defense. Am J Reprod Immunol. 2014;71(6):618–23. https://doi.org/10.1111/aji.12230.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Suarez LJ, Arboleda S, Angelov N, Arce RM. Oral versus gastrointestinal mucosal immune niches in homeostasis and allostasis. Front Immunol. 2021;12: 705206. https://doi.org/10.3389/fimmu.2021.705206.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lionakis MS, Drummond RA, Hohl TM. Immune responses to human fungal pathogens and therapeutic prospects. Nat Rev Immunol. 2023;23(7):433–52. https://doi.org/10.1038/s41577-022-00826-w.

Article  CAS  PubMed  Google Scholar 

Desai JV, Lionakis MS. The role of neutrophils in host defense against invasive fungal infections. Curr Clin Microbiol Rep. 2018;5(3):181–9. https://doi.org/10.1007/s40588-018-0098-6.

Article  PubMed  PubMed Central  Google Scholar 

Aggor FEY, Break TJ, Trevejo-Nuñez G, Whibley N, Coleman BM, Bailey RD, et al. Oral epithelial IL-22/STAT3 signaling licenses IL-17-mediated immunity to oral mucosal candidiasis. Sci Immunol. 2020;5(48). https://doi.org/10.1126/sciimmunol.aba0570.

Trautwein-Weidner K, Gladiator A, Nur S, Diethelm P, LeibundGut-Landmann S. IL-17-mediated antifungal defense in the oral mucosa is independent of neutrophils. Mucosal Immunol. 2015;8(2):221–31. https://doi.org/10.1038/mi.2014.57.

Article  CAS  PubMed  Google Scholar 

Conti HR, Bruno VM, Childs EE, Daugherty S, Hunter JP, Mengesha BG, et al. IL-17 receptor signaling in oral epithelial cells is critical for protection against oropharyngeal candidiasis. Cell Host Microbe. 2016;20(5):606–17. https://doi.org/10.1016/j.chom.2016.10.001.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Doron I, Mesko M, Li XV, Kusakabe T, Leonardi I, Shaw DG, et al. Mycobiota-induced iga antibodies regulate fungal commensalism in the gut and are dysregulated in crohn’s disease. Nat Microbiol. 2021;6(12):1493–504. https://doi.org/10.1038/s41564-021-00983-z.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ost KS, O’Meara TR, Stephens WZ, Chiaro T, Zhou H, Penman J, et al. Adaptive immunity induces mutualism between commensal eukaryotes. Nature. 2021;596(7870):114–8. https://doi.org/10.1038/s41586-021-03722-w.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Millet N, Solis NV, Swidergall M. Mucosal iga prevents commensal candida albicans dysbiosis in the oral cavity. Front Immunol. 2020;11:555363. https://doi.org/10.3389/fimmu.2020.555363.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ardizzoni A, Wheeler RT, Pericolini E. It takes two to tango: how a dysregulation of the innate immunity, coupled with candida virulence. Trig VVC Onset Front Microbiol. 2021;12:692491. https://doi.org/10.3389/fmicb.2021.692491.

Article  Google Scholar 

Yano J, Fidel PL Jr. Impaired neutrophil extracellular trap-forming capacity contributes to susceptibility to chronic vaginitis in a mouse model of vulvovaginal candidiasis. Infect Immun. 2024;92(3):e0035023. https://doi.org/10.1128/iai.00350-23.

Article  CAS  PubMed  Google Scholar 

Yano J, Noverr MC, Fidel PL, Jr. Vaginal Heparan Sulfate Linked to Neutrophil Dysfunction in the Acute Inflammatory Response Associated with Experimental Vulvovaginal Candidiasis. mBio. 2017;8(2). https://doi.org/10.1128/mBio.00211-17.

Rosati D, Bruno M, Jaeger M, Ten Oever J, Netea MG. Recurrent vulvovaginal candidiasis: an immunological perspective. Microorganisms. 2020;8(2). https://doi.org/10.3390/microorganisms8020144.

Drummond RA, Desai JV, Ricotta EE, Swamydas M, Deming C, Conlan S, et al. Long-term antibiotic exposure promotes mortality after systemic fungal infection by driving lymphocyte dysfunction and systemic escape of commensal bacteria. Cell Host Microbe. 2022;30(7):1020-33 e6. https://doi.org/10.1016/j.chom.2022.04.013.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Papon N, Van Dijck P. A complex microbial interplay underlies recurrent vulvovaginal candidiasis pathobiology. mSystems. 2021;6(5):e0106621. https://doi.org/10.1128/mSystems.01066-21.

Morales DK, Hogan DA. Candida albicans interactions with bacteria in the context of human health and disease. PLoS Pathog. 2010;6(4): e1000886. https://doi.org/10.1371/journal.ppat.1000886.

Article 

Comments (0)

No login
gif