Wheeler ML, Limon JJ, Bar AS, Leal CA, Gargus M, Tang J, et al. Immunological consequences of intestinal fungal dysbiosis. Cell Host Microbe. 2016;19(6):865–73. https://doi.org/10.1016/j.chom.2016.05.003.
Article CAS PubMed PubMed Central Google Scholar
Lopez-Medina E, Fan D, Coughlin LA, Ho EX, Lamont IL, Reimmann C, et al. Candida albicans inhibits pseudomonas aeruginosa virulence through suppression of pyochelin and pyoverdine biosynthesis. PLoS Pathog. 2015;11(8):e1005129. https://doi.org/10.1371/journal.ppat.1005129.
Article CAS PubMed PubMed Central Google Scholar
Tso GHW, Reales-Calderon JA, Tan ASM, Sem X, Le GTT, Tan TG, et al. Experimental evolution of a fungal pathogen into a gut symbiont. Science. 2018;362(6414):589–95. https://doi.org/10.1126/science.aat0537.
Article CAS PubMed Google Scholar
Leonardi I, Gao IH, Lin WY, Allen M, Li XV, Fiers WD, et al. Mucosal fungi promote gut barrier function and social behavior via Type 17 immunity. Cell. 2022;185(5):831–46 e14. https://doi.org/10.1016/j.cell.2022.01.017.
Shao TY, Kakade P, Witchley JN, Frazer C, Murray KL, Ene IV, et al. Candida albicans oscillating UME6 expression during intestinal colonization primes systemic Th17 protective immunity. Cell Rep. 2022;39(7): 110837. https://doi.org/10.1016/j.celrep.2022.110837.
Article CAS PubMed PubMed Central Google Scholar
Doron I, Leonardi I, Li XV, Fiers WD, Semon A, Bialt-DeCelie M, et al. Human gut mycobiota tune immunity via CARD9-dependent induction of anti-fungal IgG antibodies. Cell. 2021;184(4):1017-31 e14. https://doi.org/10.1016/j.cell.2021.01.016.
Article CAS PubMed PubMed Central Google Scholar
Shao TY, Ang WXG, Jiang TT, Huang FS, Andersen H, Kinder JM, et al. Commensal Candida albicans Positively Calibrates Systemic Th17 Immunological Responses. Cell Host Microbe. 2019;25(3):404-17e6. https://doi.org/10.1016/j.chom.2019.02.004.
Article CAS PubMed PubMed Central Google Scholar
Markey L, Shaban L, Green ER, Lemon KP, Mecsas J, Kumamoto CA. Pre-colonization with the commensal fungus Candida albicans reduces murine susceptibility to Clostridium difficile infection. Gut Microbes. 2018;9(6):497–509. https://doi.org/10.1080/19490976.2018.1465158.
Article CAS PubMed PubMed Central Google Scholar
Denning DW. Global incidence and mortality of severe fungal disease. Lancet Infect Dis. 2024. https://doi.org/10.1016/S1473-3099(23)00692-8.
Fukazawa EI, Witkin SS, Robial R, Vinagre JG, Baracat EC, Linhares IM. Influence of recurrent vulvovaginal candidiasis on quality of life issues. Arch Gynecol Obstet. 2019;300(3):647–50. https://doi.org/10.1007/s00404-019-05228-3.
Li XV, Leonardi I, Iliev ID. Gut mycobiota in immunity and inflammatory disease. Immunity. 2019;50(6):1365–79. https://doi.org/10.1016/j.immuni.2019.05.023.
Article CAS PubMed PubMed Central Google Scholar
Fisher MC, Denning DW. The WHO fungal priority pathogens list as a game-changer. Nat Rev Microbiol. 2023;21(4):211–2. https://doi.org/10.1038/s41579-023-00861-x.
Article CAS PubMed PubMed Central Google Scholar
Alves R, Barata-Antunes C, Casal M, Brown AJP, Van Dijck P, Paiva S. Adapting to survive: how candida overcomes host-imposed constraints during human colonization. PLoS Pathog. 2020;16(5): e1008478. https://doi.org/10.1371/journal.ppat.1008478.
Article CAS PubMed PubMed Central Google Scholar
Anderson DJ, Marathe J, Pudney J. The structure of the human vaginal stratum corneum and its role in immune defense. Am J Reprod Immunol. 2014;71(6):618–23. https://doi.org/10.1111/aji.12230.
Article CAS PubMed PubMed Central Google Scholar
Suarez LJ, Arboleda S, Angelov N, Arce RM. Oral versus gastrointestinal mucosal immune niches in homeostasis and allostasis. Front Immunol. 2021;12: 705206. https://doi.org/10.3389/fimmu.2021.705206.
Article CAS PubMed PubMed Central Google Scholar
Lionakis MS, Drummond RA, Hohl TM. Immune responses to human fungal pathogens and therapeutic prospects. Nat Rev Immunol. 2023;23(7):433–52. https://doi.org/10.1038/s41577-022-00826-w.
Article CAS PubMed Google Scholar
Desai JV, Lionakis MS. The role of neutrophils in host defense against invasive fungal infections. Curr Clin Microbiol Rep. 2018;5(3):181–9. https://doi.org/10.1007/s40588-018-0098-6.
Article PubMed PubMed Central Google Scholar
Aggor FEY, Break TJ, Trevejo-Nuñez G, Whibley N, Coleman BM, Bailey RD, et al. Oral epithelial IL-22/STAT3 signaling licenses IL-17-mediated immunity to oral mucosal candidiasis. Sci Immunol. 2020;5(48). https://doi.org/10.1126/sciimmunol.aba0570.
Trautwein-Weidner K, Gladiator A, Nur S, Diethelm P, LeibundGut-Landmann S. IL-17-mediated antifungal defense in the oral mucosa is independent of neutrophils. Mucosal Immunol. 2015;8(2):221–31. https://doi.org/10.1038/mi.2014.57.
Article CAS PubMed Google Scholar
Conti HR, Bruno VM, Childs EE, Daugherty S, Hunter JP, Mengesha BG, et al. IL-17 receptor signaling in oral epithelial cells is critical for protection against oropharyngeal candidiasis. Cell Host Microbe. 2016;20(5):606–17. https://doi.org/10.1016/j.chom.2016.10.001.
Article CAS PubMed PubMed Central Google Scholar
Doron I, Mesko M, Li XV, Kusakabe T, Leonardi I, Shaw DG, et al. Mycobiota-induced iga antibodies regulate fungal commensalism in the gut and are dysregulated in crohn’s disease. Nat Microbiol. 2021;6(12):1493–504. https://doi.org/10.1038/s41564-021-00983-z.
Article CAS PubMed PubMed Central Google Scholar
Ost KS, O’Meara TR, Stephens WZ, Chiaro T, Zhou H, Penman J, et al. Adaptive immunity induces mutualism between commensal eukaryotes. Nature. 2021;596(7870):114–8. https://doi.org/10.1038/s41586-021-03722-w.
Article CAS PubMed PubMed Central Google Scholar
Millet N, Solis NV, Swidergall M. Mucosal iga prevents commensal candida albicans dysbiosis in the oral cavity. Front Immunol. 2020;11:555363. https://doi.org/10.3389/fimmu.2020.555363.
Article CAS PubMed PubMed Central Google Scholar
Ardizzoni A, Wheeler RT, Pericolini E. It takes two to tango: how a dysregulation of the innate immunity, coupled with candida virulence. Trig VVC Onset Front Microbiol. 2021;12:692491. https://doi.org/10.3389/fmicb.2021.692491.
Yano J, Fidel PL Jr. Impaired neutrophil extracellular trap-forming capacity contributes to susceptibility to chronic vaginitis in a mouse model of vulvovaginal candidiasis. Infect Immun. 2024;92(3):e0035023. https://doi.org/10.1128/iai.00350-23.
Article CAS PubMed Google Scholar
Yano J, Noverr MC, Fidel PL, Jr. Vaginal Heparan Sulfate Linked to Neutrophil Dysfunction in the Acute Inflammatory Response Associated with Experimental Vulvovaginal Candidiasis. mBio. 2017;8(2). https://doi.org/10.1128/mBio.00211-17.
Rosati D, Bruno M, Jaeger M, Ten Oever J, Netea MG. Recurrent vulvovaginal candidiasis: an immunological perspective. Microorganisms. 2020;8(2). https://doi.org/10.3390/microorganisms8020144.
Drummond RA, Desai JV, Ricotta EE, Swamydas M, Deming C, Conlan S, et al. Long-term antibiotic exposure promotes mortality after systemic fungal infection by driving lymphocyte dysfunction and systemic escape of commensal bacteria. Cell Host Microbe. 2022;30(7):1020-33 e6. https://doi.org/10.1016/j.chom.2022.04.013.
Article CAS PubMed PubMed Central Google Scholar
Papon N, Van Dijck P. A complex microbial interplay underlies recurrent vulvovaginal candidiasis pathobiology. mSystems. 2021;6(5):e0106621. https://doi.org/10.1128/mSystems.01066-21.
Morales DK, Hogan DA. Candida albicans interactions with bacteria in the context of human health and disease. PLoS Pathog. 2010;6(4): e1000886. https://doi.org/10.1371/journal.ppat.1000886.
Comments (0)