David Boothe W, Tarbox JA, Tarbox MB. Atopic dermatitis: pathophysiology. Adv Exp Med Biol. 2017. p. 21–37.
Bieber T. Atopic dermatitis: an expanding therapeutic pipeline for a complex disease. Nat Rev Drug Discov. 2022;21:21–40.
Article CAS PubMed Google Scholar
Bieber T, Novak N. Pathogenesis of atopic dermatitis: new developments. Curr Allergy Asthma Rep. 2009;9:291–4.
Article CAS PubMed Google Scholar
Prasannanjaneyulu V, Nene S, Jain H, Nooreen R, Otavi S, Chitlangya P, et al. Old drugs, new tricks: emerging role of drug repurposing in the management of atopic dermatitis. Cytokine Growth Factor Rev. 2022;65:12–26.
Article CAS PubMed Google Scholar
Langan SM, Irvine AD, Weidinger S. Atopic dermatitis. Lancet [Internet]. 2020;396:345–60. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0140673620312861.
Weidinger S, Beck LA, Bieber T, Kabashima K, Irvine AD. Atopic dermatitis. Nat Rev Dis Prim [Internet]. 2018;4:1. Available from: https://www.nature.com/articles/s41572-018-0001-z.
Tsakok T, Woolf R, Smith CH, Weidinger S, Flohr C. Atopic dermatitis: the skin barrier and beyond. Br J Dermatol. 2019;180:464–74.
Article CAS PubMed Google Scholar
Wang Y, Weng H, Song JF, Deng YH, Li S, Liu HB. Activation of the HMGB1-TLR4-NF-κB pathway may occur in patients with atopic eczema. Mol Med Rep. 2017;16:2714–20.
Article CAS PubMed PubMed Central Google Scholar
Nygaard U, Van Den Bogaard EH, Niehues H, Hvid M, Deleuran M, Johansen C, et al. The alarmins HMBG1 and IL-33 downregulate structural skin barrier proteins and impair epidermal growth. Acta Derm Venereol. 2017;97:305–12.
Article CAS PubMed Google Scholar
Karuppagounder V, Arumugam S, Thandavarayan RA, Pitchaimani V, Sreedhar R, Afrin R, et al. Resveratrol attenuates HMGB1 signaling and inflammation in house dust mite-induced atopic dermatitis in mice. Int Immunopharmacol. 2014;23:617–23.
Article CAS PubMed Google Scholar
Summerlin N, Soo E, Thakur S, Qu Z, Jambhrunkar S, Popat A. Resveratrol nanoformulations: challenges and opportunities. Int J Pharm. 2015;479:282–90.
Article CAS PubMed Google Scholar
Rai VK, Mishra N, Yadav KS, Yadav NP. Nanoemulsion as pharmaceutical carrier for dermal and transdermal drug delivery: Formulation development, stability issues, basic considerations and applications. J Control Release. 2018;270:203–25.
Article CAS PubMed Google Scholar
Espinoza LC, Silva-Abreu M, Calpena AC, Rodríguez-Lagunas MJ, Fábrega MJ, Garduño-Ramírez ML, et al. Nanoemulsion strategy of pioglitazone for the treatment of skin inflammatory diseases. Nanomed Nanatechnol Biol Med. 2019;19:115–25.
Ghosalkar S, Singh P, Ravikumar P. Emerging topical drug delivery approaches for the treatment of atopic dermatitis. J Cosmet Dermatol. 2022;21:536–49.
Talegaonkar S, Mustafa G, Akhter S, Iqbal ZI. Design and development of oral oil-in-water nanoemulsion formulation bearing atorvastatin: in vitro assessment. J Dispers Sci Technol. 2010;31:690–701.
S-N S, S F, T S, J. A S, B AA et al. Formulation development and optimization using nanoemulsion technique: A technical note. AAPS PharmSciTech [Internet]. 2007;8:E12–7. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2750368/.
Chang Y, McLandsborough L, McClements DJ. Physicochemical properties and antimicrobial efficacy of carvacrol nanoemulsions formed by spontaneous emulsification. J Agric Food Chem. 2013;61:8906–13.
Article CAS PubMed Google Scholar
Shafiq S, Shakeel F, Talegaonkar S, Ahmad FJ, Khar RK, Ali M. Development and bioavailability assessment of ramipril nanoemulsion formulation. Eur J Pharm Biopharm. 2007;66:227–43.
Article CAS PubMed Google Scholar
Khurana B, Arora D, Narang RK. QbD based exploration of resveratrol loaded polymeric micelles based carbomer gel for topical treatment of plaque psoriasis: in vitro, ex vivo and in vivo studies. J Drug Deliv Sci Technol. 2020;59.
Ahmed S, Kassem MA, Sayed S. Bilosomes as promising nanovesicular carriers for improved transdermal delivery: construction, in vitro optimization, ex vivo permeation and in vivo evaluation. Int J Nanomed. 2020;15:9783–98.
Pandey SS, Shah KM, Maulvi FA, Desai DT, Gupta AR, Joshi SV et al. Topical delivery of cyclosporine loaded tailored niosomal nanocarriers for improved skin penetration and deposition in psoriasis: optimization, ex vivo and animal studies. J Drug Deliv Sci Technol. 2021;63.
Parmar PK, Sharma N, Wasil Kabeer S, Rohit A, Bansal AK. Nanocrystal-based gel of apremilast ameliorates imiquimod-induced psoriasis by suppressing inflammatory responses. Int J Pharm. 2022;622.
Jang S, Ohn J, Kim JW, Kang SM, Jeon D, Heo CY et al. Caffeoyl–pro–his amide relieve DNCB-Induced Atopic Dermatitis-Like phenotypes in BALB/c mice. Sci Rep. 2020;10.
Jin W, Huang W, Chen L, Jin M, Wang Q, Gao Z et al. Topical application of JAK1/JAK2 inhibitor momelotinib exhibits significant anti-inflammatory responses in DNCB-induced atopic dermatitis model mice. Int J Mol Sci. 2018;19.
Gangadevi V, Thatikonda S, Pooladanda V, Devabattula G, Godugu C. Selenium nanoparticles produce a beneficial effect in psoriasis by reducing epidermal hyperproliferation and inflammation. J Nanobiotechnol. 2021;19.
Vandeghinste N, Klattig J, Jagerschmidt C, Lavazais S, Marsais F, Haas JD, et al. Neutralization of IL-17 C reduces skin inflammation in mouse models of Psoriasis and atopic dermatitis. J Invest Dermatol. 2018;138:1555–63.
Article CAS PubMed Google Scholar
Izumi R, Azuma K, Izawa H, Morimoto M, Nagashima M, Osaki T, et al. Chitin nanofibrils suppress skin inflammation in atopic dermatitis-like skin lesions in NC/Nga mice. Carbohydr Polym. 2016;146:320–7.
Article CAS PubMed Google Scholar
De Araújo Lopes A, Da Fonseca FN, Rocha TM, De Freitas LB, Araújo EVO, Wong DVT et al. Eugenol as a promising molecule for the treatment of dermatitis: Antioxidant and anti-inflammatory activities and its nanoformulation. Oxid Med Cell Longev. 2018;2018.
Mohammed SA, Mohammad ZA, Javed A. Nanoemulsion loaded polymeric hydrogel for topical delivery of curcumin in Psoriasis. J Drug Deliv Sci Technol. 2020;59:101847.
Arora D, Nanda S. Quality by design driven development of resveratrol loaded ethosomal hydrogel for improved dermatological benefits via enhanced skin permeation and retention. Int J Pharm. 2019;567.
Lee CH, Moturi V, Lee Y. Thixotropic property in pharmaceutical formulations. J Control Release. 2009;136:88–98.
Article CAS PubMed Google Scholar
Garg NK, Tandel N, Bhadada SK, Tyagi RK. Nanostructured lipid carrier–mediated transdermal delivery of Aceclofenac Hydrogel Present an Effective Therapeutic Approach for Inflammatory diseases. Front Pharmacol. 2021;12.
Chitkara A, Mangla B, Kumar P, Javed S, Ahsan W, Popli H. Design-of-experiments (DoE)-Assisted fabrication of Quercetin-Loaded Nanoemulgel and its evaluation against human skin Cancer cell lines. Pharmaceutics. 2022;14.
Garg NK, Sharma G, Singh B, Nirbhavane P, Tyagi RK, Shukla R, et al. Quality by design (QbD)-enabled development of aceclofenac loaded-nano structured lipid carriers (NLCs): an improved dermatokinetic profile for inflammatory disorder(s). Int J Pharm. 2017;517:413–31.
Article CAS PubMed Google Scholar
Nawaz A, Latif MS, Alnuwaiser MA, Ullah S, Iqbal M, Alfatama M et al. Synthesis and characterization of Chitosan-decorated Nanoemulsion Gel of 5-Fluorouracil for topical delivery. Gels. 2022;8.
Noreen S, Pervaiz F, Ashames A, Buabeid M, Fahelelbom K, Shoukat H et al. Optimization of novel naproxen-loaded chitosan/ carrageenan nanocarrier-based gel for topical delivery: ex vivo, histopathological, and in vivo evaluation. Pharmaceuticals. 2021;14.
Riviere JE, Brooks JD. Predicting skin permeability from complex chemical mixtures: dependency of quantitative structure permeation relationships on biology of skin model used. Toxicol Sci. 2011;119:224–32.
Article CAS PubMed Google Scholar
Cheng CY, Lin YK, Yang SC, Alalaiwe A, Lin CJ, Fang JY et al. Percutaneous absorption of resveratrol and its oligomers to relieve psoriasiform lesions: in silico, in vitro and in vivo evaluations. Int J Pharm. 2020;585.
Murakami I, Chaleckis R, Pluskal T, Ito K, Hori K, Ebe M et al. Metabolism of skin-absorbed resveratrol into its glucuronized form in mouse skin. PLoS ONE. 2014;9.
Chaturvedi S, Garg A. Development and optimization of nanoemulsion containing exemestane using box-behnken design. J Drug Deliv Sci Technol. 2023;80.
Cross SE, Magnusson BM, Winckle G, Anissimov Y, Roberts MS. Determination of the effect of lipophilicity on the in vitro permeability and tissue reservoir characteristics of topically applied solutes in human skin layers. J Invest Dermatol. 2003;120:759–64.
Article CAS PubMed Google Scholar
Najafi-Taher R, Ghaemi B, Amani A. Delivery of adapalene using a novel topical gel based on tea tree oil nano-emulsion: permeation, antibacterial and safety assessments. Eur J Pharm Sci. 2018;120:142–51.
Article CAS PubMed Google Scholar
Cláudia Paiva-Santos A, Gama M, Peixoto D, Sousa-Oliveira I, Ferreira-Faria I, Zeinali M et al. Nanocarrier-based dermopharmaceutical formulations for the topical management of atopic dermatitis. Int J Pharm. 2022;618.
Rapalli VK, Sharma S, Roy A, Alexander A, Singhvi G. Solid lipid nanocarriers embedded hydrogel for topical delivery of apremilast: In-vitro, ex-vivo, dermatopharmacokinetic and anti-psoriatic evaluation. J Drug Deliv Sci Technol. 2021;63.
Xu H, Wen Y, Chen S, Zhu L, Feng R, Song Z. Paclitaxel skin delivery by micelles-embedded Carbopol 940 hydrogel for local therapy of melanoma. Int J Pharm. 2020;587.
Atmakuri S, Nene S, Jain H, Joga R, Devabattula G, Godugu C et al. Topical delivery of tofacitinib citrate loaded novel nanoemulgel for the management of 2,4-Dichlorodinitrobenzene induced atopic dermatitis in mice model. J Drug Deliv Sci Technol. 2023;80.
Lotze MT, Tracey KJ. High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal. Nat Rev Immunol. 2005;5:331–42.
Article CAS PubMed Google Scholar
Tak PP, Firestein GS. NF-κB: a key role in inflammatory diseases. J Clin Invest. 2001;107:7–11.
Article CAS PubMed PubMed Central Google Scholar
Meng T, Xiao D, Muhammed A, Deng J, Chen L, He J. Anti-inflammatory action and mechanisms of Resveratrol. Molecules. 2021;26.
Wang T, Wu F, Jin Z, Zhai Z, Wang Y, Tu B, et al. Plumbagin inhibits LPS-induced inflammation through the inactivation of the nuclear factor-kappa B and mitogen activated protein kinase signaling pathways in RAW 264.7 cells. Food Chem Toxicol. 2014;64:177–83.
Article CAS PubMed Google Scholar
Kumagai A, Kubo T, Kawata K, Kamekura R, Yamashita K, Jitsukawa S, et al. Keratinocytes in atopic dermatitis express abundant ∆Np73 regulating thymic stromal lymphopoietin production via NF-κB. J Dermatol Sci. 2017;88:175–83.
Comments (0)