A comprehensive review on doxorubicin: mechanisms, toxicity, clinical trials, combination therapies and nanoformulations in breast cancer

Sathishkumar K, Chaturvedi M, Das P, Stephen S, Mathur P. Cancer incidence estimates for 2022 & projection for 2025: result from National Cancer Registry Programme, India. Indian J Med Res. 2022;156(4&5):598–607. https://doi.org/10.4103/ijmr.ijmr_1821_22.

Article  PubMed  Google Scholar 

Satyanarayana L, Asthana S, Labani SP. Childhood cancer incidence in India: a review of population-based cancer registries. Indian Pediatr. 2014;51(3):218–20. https://doi.org/10.1007/s13312-014-0377-0.

Article  CAS  PubMed  Google Scholar 

Hamann U, Ankel C. Breast cancer: diagnostics and therapy - the most important facts for internists. Dtsch Med Wochenschr (1946). 2018;143(4):267–78. https://doi.org/10.1055/s-0043-104456.

Article  Google Scholar 

Katsura C, Ogunmwonyi I, Kankam HK, Saha S. Breast cancer: presentation, investigation and management. Br J Hosp Med (London, England: 2005). 2022;83(2):1–7. https://doi.org/10.12968/hmed.2021.0459.

Article  Google Scholar 

Mb A, Vs R, Me J, Ao A. Breast cancer biomarkers: risk assessment, diagnosis, prognosis, prediction of treatment efficacy and toxicity, and recurrence. Curr Pharm Des. 2014;20(30):4879–98. https://doi.org/10.2174/1381612819666131125145517.

Article  CAS  Google Scholar 

Thorn CF, Oshiro C, Marsh S, Hernandez-Boussard T, McLeod H, Klein TE, et al. Doxorubicin pathways: pharmacodynamics and adverse effects. Pharmacogenet Genomics. 2011;21(7):440–6. https://doi.org/10.1097/FPC.0b013e32833ffb56.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Carvalho C, Santos RX, Cardoso S, Correia S, Oliveira PJ, Santos MS, et al. Doxorubicin: the good, the bad and the ugly effect. Curr Med Chem. 2009;16(25):3267–85. https://doi.org/10.2174/092986709788803312.

Article  CAS  PubMed  Google Scholar 

Nicoletto RE, Ofner CM 3rd. Cytotoxic mechanisms of doxorubicin at clinically relevant concentrations in breast cancer cells. Cancer Chemother Pharmacol. 2022;89(3):285–311. https://doi.org/10.1007/s00280-022-04400-y.

Article  CAS  PubMed  Google Scholar 

Zhao N, Woodle MC, Mixson AJ. Advances in delivery systems for doxorubicin. J Nanomed Nanotechnol. 2018;9(5). https://doi.org/10.4172/2157-7439.1000519.

Gurunathan S, Kang MH, Qasim M, Kim JH. Nanoparticle-Mediated combination therapy: two-in-one approach for cancer. Int J Mol Sci. 2018;19(10). https://doi.org/10.3390/ijms19103264.

Singh AP, Biswas A, Shukla A, Maiti P. Targeted therapy in chronic diseases using nanomaterial-based drug delivery vehicles. Signal Transduct Target Ther. 2019;4(1):33. https://doi.org/10.1038/s41392-019-0068-3.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kaminskas LM, McLeod VM, Kelly BD, Sberna G, Boyd BJ, Williamson M, et al. A comparison of changes to doxorubicin pharmacokinetics, antitumor activity, and toxicity mediated by PEGylated dendrimer and PEGylated liposome drug delivery systems. Nanomedicine. 2012;8(1):103–11. https://doi.org/10.1016/j.nano.2011.05.013.

Article  CAS  PubMed  Google Scholar 

Agudelo D, Bourassa P, Bérubé G, Tajmir-Riahi HA. Intercalation of antitumor drug doxorubicin and its analogue by DNA duplex: structural features and biological implications. Int J Biol Macromol. 2014;66:144–50. https://doi.org/10.1016/j.ijbiomac.2014.02.028.

Article  CAS  PubMed  Google Scholar 

Arcamone F. Structure-Activity Relationships in Doxorubicin Related Compounds. In: Reinhoudt DN, Connors TA, Pinedo HM, van de Poll KW, editors. Structure-activity relationships of anti-tumour agents. Dordrecht: Springer Netherlands; 1983. p. 111–33.

Chapter  Google Scholar 

Micallef I, Baron B. Doxorubicin: an overview of the anti-cancer and chemoresistance mechanisms. Ann Clin Toxicol. 2020;3(2):1031.

Kciuk M, Gielecińska A, Mujwar S, Kołat D, Kałuzińska-Kołat Ż, Celik I, et al. Doxorubicin-an agent with multiple mechanisms of anticancer activity. Cells. 2023;12(4). https://doi.org/10.3390/cells12040659.

Gökçe Topkaya C, Göktürk T, Hökelek T, Sakalli Çetin E, Kincal S, Güp R. In vitro DNA interaction, topoisomerase I/II Inhibition and cytotoxic properties of polymeric copper(II) complex bridged with perchlorate ion containing N4-type schiff base ligand. J Mol Struct. 2022;1266:133453. https://doi.org/10.1016/j.molstruc.2022.133453.

Article  CAS  Google Scholar 

Taymaz-Nikerel H, Karabekmez ME, Eraslan S, Kırdar B. Doxorubicin induces an extensive transcriptional and metabolic rewiring in yeast cells. Sci Rep. 2018;8(1):13672. https://doi.org/10.1038/s41598-018-31939-9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Besterman JM, Elwell LP, Cragoe EJ Jr, Andrews CW, Cory M. DNA intercalation and inhibition of topoisomerase II. Structure-activity relationships for a series of amiloride analogs. J Biol Chem. 1989;264(4):2324–30.

Article  CAS  PubMed  Google Scholar 

Wang S, Song P, Zou MH. Inhibition of AMP-activated protein kinase α (AMPKα) by doxorubicin accentuates genotoxic stress and cell death in mouse embryonic fibroblasts and cardiomyocytes: role of p53 and SIRT1. J Biol Chem. 2012;287(11):8001–12. https://doi.org/10.1074/jbc.M111.315812.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen L, Sun X, Wang Z, Chen M, He Y, Zhang H, et al. Resveratrol protects against doxorubicin-induced cardiotoxicity by attenuating ferroptosis through modulating the MAPK signaling pathway. Toxicol Appl Pharmacol. 2024;482:116794. https://doi.org/10.1016/j.taap.2023.116794.

Article  CAS  PubMed  Google Scholar 

Xu A, Deng F, Chen Y, Kong Y, Pan L, Liao Q, et al. NF-κB pathway activation during endothelial-to-mesenchymal transition in a rat model of doxorubicin-induced cardiotoxicity. Biomed Pharmacother. 2020;130:110525. https://doi.org/10.1016/j.biopha.2020.110525.

Article  CAS  PubMed  Google Scholar 

Hrelia S, Fiorentini D, Maraldi T, Angeloni C, Bordoni A, Biagi PL, et al. Doxorubicin induces early lipid peroxidation associated with changes in glucose transport in cultured cardiomyocytes. Biochim Biophys Acta Biomembr. 2002;1567:150–6. https://doi.org/10.1016/S0005-2736(02)00612-0.

Article  CAS  Google Scholar 

Ozcan M, Guo Z, Valenzuela Ripoll C, Diab A, Picataggi A, Rawnsley D, et al. Sustained alternate-day fasting potentiates doxorubicin cardiotoxicity. Cell Metab. 2023;35(6):928-42.e4. https://doi.org/10.1016/j.cmet.2023.02.006.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fonoudi H, Jouni M, Cejas RB, Magdy T, Blancard M, Ge N, et al. Functional validation of doxorubicin-induced cardiotoxicity-related genes. JACC CardioOncol. 2024. https://doi.org/10.1016/j.jaccao.2023.11.008.

Hou K, Shen J, Yan J, Zhai C, Zhang J, Pan JA, et al. Loss of TRIM21 alleviates cardiotoxicity by suppressing ferroptosis induced by the chemotherapeutic agent doxorubicin. EBioMedicine. 2021;69:103456. https://doi.org/10.1016/j.ebiom.2021.103456.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ni C, Fang J, Qian H, Xu Q, Shen F. Liposomal doxorubicin-related palmar-plantar erythrodysesthesia (hand-foot syndrome): a case report. J Int Med Res. 2020;48(12):300060520974854. https://doi.org/10.1177/0300060520974854.

Article  PubMed  Google Scholar 

Krychman ML, Carter J, Aghajanian CA, Dizon DS, Castiel M. Chemotherapy-induced dyspareunia: a case study of vaginal mucositis and pegylated liposomal doxorubicin injection in advanced stage ovarian carcinoma. Gynecol Oncol. 2004;93(2):561–3. https://doi.org/10.1016/j.ygyno.2004.02.001.

Article  PubMed  Google Scholar 

Tawfik A, Shouman S, Tabashy R, Omran M, Gad El-Mola M. Evaluation of doxorubicin administrations in hepatocellular carcinoma in terms of genetic polymorphism, case study: Egypt. Arab Gulf J Sci Res. 2023;ahead-of-print(ahead-of-print). https://doi.org/10.1108/AGJSR-04-2023-0158.

Yemm KE, Alwan LM, Malik AB, Salazar LG. Renal toxicity with liposomal doxorubicin in metastatic breast cancer. J Oncol Pharm Pract. 2019;25(7):1738–42. https://doi.org/10.1177/1078155218798157.

Article  CAS  PubMed  Google Scholar 

Matesun DA, Mensah KB, Yamoah P, Bangalee V, Padayachee N. Adverse drug reactions associated with doxorubicin and epirubicin: A descriptive analysis from VigiBase. J Oncol Pharm Pract. 2022;10781552221113578. https://doi.org/10.1177/10781552221113578.

Eikenberry S. A tumor cord model for doxorubicin delivery and dose optimization in solid tumors. Theor Biol Med Model. 2009;6:16. https://doi.org/10.1186/1742-4682-6-16.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hwang D, Ramsey JD, Kabanov AV. Polymeric micelles for the delivery of poorly soluble drugs: from nanoformulation to clinical approval. Adv Drug Deliv Rev. 2020;156:80–118. https://doi.org/10.1016/j.addr.2020.09.009.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Comments (0)

No login
gif