Aam BB, Heggset EB, Norberg AL, Sørlie M, Vårum KM, Eijsink VGH (2010) Production of chitooligosaccharides and their potential applications in medicine. Mar Drugs 8: 1482–1517. https://doi.org/10.3390/md8051482
Article CAS PubMed PubMed Central Google Scholar
Ajuna HB, Lim HI, Moon JH, Won SJ, Choub V, Choi SI, Yun JY, Ahn YS (2023) The prospect of hydrolytic enzymes from Bacillus species in the biological control of pests and diseases in forest and fruit tree production. Int J Mol Sci 24. https://doi.org/10.3390/ijms242316889
Ali AM, Abdel-Rahman TMA, Farahat MG (2024) Bioprospecting of culturable halophilic bacteria isolated from mediterranean solar saltern for extracellular halotolerant enzymes. Microbiol Biotechnol Lett 52:76–87. https://doi.org/10.48022/mbl.2401.01010
Anas A, Nilayangod C, Jasmin C, Vinothkumar S, Parameswaran PS, Nair S (2016) Diversity and bioactive potentials of culturable heterotrophic bacteria from the surficial sediments of the Arabian Sea. 3 Biotech 6:1–8. https://doi.org/10.1007/s13205-016-0556-x
Annamalai N, Rajeswari MV, Vijayalakshmi S, Balasubramanian T (2011) Purification and characterization of chitinase from Alcaligenes faecalis AU02 by utilizing marine wastes and its antioxidant activity. Ann Microbiol 61:801–807. https://doi.org/10.1007/s13213-011-0198-5
Article CAS PubMed PubMed Central Google Scholar
Beltagy EA, Rawway M, Abdul-Raouf UM, Elshenawy MA, Kelany MS (2018) Purification and characterization of theromohalophilic chitinase producing by halophilic aspergillus flavus isolated from Suez Gulf. Egypt J Aquat Res 44:227–232. https://doi.org/10.1016/j.ejar.2018.08.002
Beygmoradi A, Homaei A (2017) Marine microbes as a valuable resource for brand new industrial biocatalysts. Biocatal Agric Biotechnol 11:131–152. https://doi.org/10.1016/j.bcab.2017.06.013
Bhattacharya D, Nagpure A, Gupta RK (2007) Bacterial chitinases: properties and potential. Crit Rev Biotechnol 27:21–28. https://doi.org/10.1080/07388550601168223
Article CAS PubMed Google Scholar
Chang WT, Chen CS, Wang SL (2003) An antifungal chitinase produced by Bacillus cereus with shrimp and crab shell powder as a carbon source. Curr Microbiol 47:102–108. https://doi.org/10.1007/s00284-002-3955-7
Article CAS PubMed Google Scholar
Daoud L, Ben Ali M (2020) Halophilic microorganisms: interesting group of extremophiles with important applications in biotechnology and environment. INC
DasSarma S, DasSarma P (2015) Halophiles and their enzymes: negativity put to good use. Curr Opin Microbiol 25:120–126. https://doi.org/10.1016/j.mib.2015.05.009
Article CAS PubMed PubMed Central Google Scholar
Delgado-García M, Valdivia-Urdiales B, Aguilar-González CN, Contreras-Esquivel JC, Rodríguez-Herrera R (2012) Halophilic hydrolases as a new tool for the biotechnological industries. J Sci Food Agric 92:2575–2580. https://doi.org/10.1002/jsfa.5860
Article CAS PubMed Google Scholar
Enamala MK, Chavali M, Pamanji SR, Tangellapally A, Dixit R, Singh M, Kuppam C (2021) Handbook of greener synthesis of nanomaterials and compounds. https://doi.org/10.1016/c2019-0-04948-5. Handb Greener Synth Nanomater Compd
Fang H, Liu X, Dong Y, Feng S, Zhou R, Wang C, Ma X, Liu J, Yang KQ (2021) Transcriptome and proteome analysis of walnut (Juglans regia L.) fruit in response to infection by Colletotrichum gloeosporioides. BMC Plant Biol 21:1–16. https://doi.org/10.1186/s12870-021-03042-1
Farag AM, Abd-Elnabey HM, Ibrahim HAH, El-Shenawy M (2016) Purification, characterization and antimicrobial activity of chitinase from marine-derived aspergillus terreus. Egypt J Aquat Res 42:185–192. https://doi.org/10.1016/j.ejar.2016.04.004
Ferrari AR, Gaber Y, Fraaije MW (2014) A fast, sensitive and easy colorimetric assay for chitinase and cellulase activity detection. Biotechnol Biofuels 7:2–9. https://doi.org/10.1186/1754-6834-7-37
Fu X, Guo Y, Jin Y, Ma M (2020) Bioconversion of chitin waste using a cold-adapted chitinase to produce chitin oligosaccharides. Lwt 133:109863. https://doi.org/10.1016/j.lwt.2020.109863
Gálvez Marroquín LA, Martinez Bolaños M, Cruz Chávez MA, Ariza Flores R, Cruz López JA, Magaña Lira N, de la Cruz LL, Ariza Hernández FJ (2022) Inhibition of mycelial growth and conidium germination of Colletotrichum sp. for organic and inorganic products. Agro Prod 15:25–32. https://doi.org/10.32854/agrop.v15i2.2051
Ghattavi S, Homaei A (2023) Marine enzymes: classification and application in various industries. Int J Biol Macromol 230:123136. https://doi.org/10.1016/j.ijbiomac.2023.123136
Article CAS PubMed Google Scholar
Gomaa EZ (2012) Chitinase production by Bacillus thuringiensis and Bacillus licheniformis: their potential in antifungal biocontrol. J Microbiol 50:103–111. https://doi.org/10.1007/s12275-012-1343-y
Article CAS PubMed Google Scholar
Gomaa EZ (2021) Microbial chitinases: properties, enhancement and potential applications. Protoplasma 258:695–710. https://doi.org/10.1007/s00709-021-01612-6
Article CAS PubMed Google Scholar
Govindaraj V, Kim SK, Raval R, Raval K (2024) Marine Bacillus haynesii chitinase: purification, characterization and antifungal potential for sustainable chitin bioconversion. Carbohydr Res 541:109170. https://doi.org/10.1016/j.carres.2024.109170
Article CAS PubMed Google Scholar
Guo X, Xu P, Zong M, Lou W (2017) Purification and characterization of alkaline chitinase from Paenibacillus pasadenensis CS0611. Cuihua Xuebao/Chinese J Catal 38:665–672. https://doi.org/10.1016/S1872-2067(17)62787-6
Gurav R, Tang J, Jadhav J (2017) Novel chitinase producer Bacillus pumilus RST25 isolated from the shellfish processing industry revealed antifungal potential against phyto-pathogens. Int Biodeterior Biodegrad 125:228–234. https://doi.org/10.1016/j.ibiod.2017.09.015
Han K, Il, Patnaik BB, Kim YH, Kwon HJ, Han YS, Han MD (2014) Isolation and characterization of chitinase-producing Bacillus and Paenibacillus strains from salted and fermented shrimp, Acetes japonicus. J Food Sci 79:665–674. https://doi.org/10.1111/1750-3841.12387
Hartl L, Zach S, Seidl-Seiboth V (2012) Fungal chitinases: diversity, mechanistic properties and biotechnological potential. Appl Microbiol Biotechnol 93:533–543. https://doi.org/10.1007/s00253-011-3723-3
Article CAS PubMed Google Scholar
Horn SJ, Eijsink VGH (2004) A reliable reducing end assay for chito-oligosaccharides. Carbohydr Polym 56:35–39. https://doi.org/10.1016/j.carbpol.2003.11.011
Ibrahim M, Selim S, Elhariri M, Farghali HA, Kamel S, Elhelw R (2023) New Chitinolytic Alcaligenes species strains isolated from shrimp shells. Egypt J Aquat Biol Fish 27:1191–1205. https://doi.org/10.21608/ejabf.2023.323781
Ilham Z, Abdellah H, Wifak B, Mohammed I, Saad I (2013) A novel Alcaligenes faecalis antibacterial-producing strain isolated from a Moroccan tannery waste. Afr J Microbiol Res 7:5314–5323. https://doi.org/10.5897/ajmr2013.6029
Jenny F, Sultana N, Islam MM, Bhuiyan MMK, B. MA (2019) A review on anthracnose of mango caused by Colletotrichum a review on anthracnose of mango caused by Colletotrichum. Bangladesh J Plant Pathol 35(12):65–74
Juárez-Hernández EO, Casados-Vázquez LE, Brieba LG, Torres-Larios A, Jimenez-Sandoval P, Barboza-Corona JE (2019) The crystal structure of the chitinase ChiA74 of Bacillus thuringiensis has a multidomain assembly. Sci Rep 9:1–10. https://doi.org/10.1038/s41598-019-39464-z
Karan R, Kumar S, Sinha R, Khare SK (2012) Halophilic microorganisms as sources of novel enzymes bt—microorganisms in sustainable agriculture and biotechnology. Springer Netherlands, Dordrecht
Karthik N, Binod P, Pandey A (2015) Purification and characterisation of an acidic and antifungal chitinase produced by a Streptomyces Sp. Bioresour Technol 188:195–201. https://doi.org/10.1016/j.biortech.2015.03.006
Article CAS PubMed Google Scholar
Kim SK, Park JE, Oh JM, Kim H (2021) Molecular characterization of four alkaline chitinases from three chitinolytic bacteria isolated from a mudflat. Int J Mol Sci 22. https://doi.org/10.3390/ijms222312822
Kotb E, Alabdalall AH, Alghamdi AI, Ababutain IM, Aldakeel SA, Al-Zuwaid SK, Algarudi BM, Algarudi SM, Ahmed AA, Albarrag AM (2023) Screening for chitin degrading bacteria in the environment of Saudi Arabia and characterization of the most potent chitinase from Streptomyces variabilis Am1. Sci Rep 13:1–12. https://doi.org/10.1038/s41598-023-38876-2
Comments (0)