Neutrophil extracellular traps formation is associated with postoperative complications in congenital cardiac surgery

Hoffman, J. I. & Kaplan, S. The incidence of congenital heart disease. J. Am. Coll. Cardiol. 39, 1890–1900 (2002).

Article  PubMed  Google Scholar 

Gilboa, S. M., Salemi, J. L., Nembhard, W. N., Fixler, D. E. & Correa, A. Mortality resulting from congenital heart disease among children and adults in the United States, 1999 to 2006. Circulation 122, 2254–2263 (2010).

Article  PubMed  PubMed Central  Google Scholar 

Brown, K. L. et al. Incidence and risk factors for important early morbidities associated with pediatric cardiac surgery in a UK population. J. Thorac. Cardiovasc Surg. 158, 1185–1196.e1187 (2019).

Article  PubMed  Google Scholar 

Murao, A., Aziz, M., Wang, H., Brenner, M. & Wang, P. Release mechanisms of major DAMPs. Apoptosis 26, 152–162 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Bianchi, M. E. DAMPs, PAMPs and alarmins: all we need to know about danger. J. Leukoc. Biol. 81, 1–5 (2007).

Article  PubMed  Google Scholar 

Kawai, C. et al. Circulating extracellular histones are clinically relevant mediators of multiple organ injury. Am. J. Pathol. 186, 829–843 (2016).

Article  PubMed  Google Scholar 

Maisat, W. & Yuki, K. Narrative review of systemic inflammatory response mechanisms in cardiac surgery and immunomodulatory role of anesthetic agents. Ann. Card. Anaesth. 26, 133–142 (2023).

Article  PubMed  PubMed Central  Google Scholar 

Denning, N. L., Aziz, M., Gurien, S. D. & Wang, P. DAMPs and NETs in sepsis. Front Immunol. 10, 2536 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Mereweather L. J., Constantinescu-Bercu A., Crawley J. T. B., Salles C., II. Platelet-neutrophil crosstalk in thrombosis. Int. J. Mol. Sci. 2023;24

Carestia, A. et al. Mediators and molecular pathways involved in the regulation of neutrophil extracellular trap formation mediated by activated platelets. J. Leukoc. Biol. 99, 153–162 (2016).

Article  PubMed  Google Scholar 

Vourc’h, M., Roquilly, A. & Asehnoune, K. Trauma-induced damage-associated molecular patterns-mediated remote organ injury and immunosuppression in the acutely Ill patient. Front Immunol. 9, 1330 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Loza, M. J. et al. Assembly of inflammation-related genes for pathway-focused genetic analysis. PLoS ONE 2, e1035 (2007).

Article  PubMed  PubMed Central  Google Scholar 

Marelli, A., Gauvreau, K., Landzberg, M. & Jenkins, K. Sex differences in mortality in children undergoing congenital heart disease surgery: a United States population-based study. Circulation 122, S234–S240 (2010).

Article  PubMed  Google Scholar 

Faraoni, D., Nasr, V. G. & DiNardo, J. A. Overall hospital cost estimates in children with congenital heart disease: analysis of the 2012 Kid’s inpatient database. Pediatr. Cardiol. 37, 37–43 (2016).

Article  PubMed  Google Scholar 

Schaefer, L. Complexity of danger: the diverse nature of damage-associated molecular patterns. J. Biol. Chem. 289, 35237–35245 (2014).

Article  PubMed  PubMed Central  Google Scholar 

Gong, T., Liu, L., Jiang, W. & Zhou, R. DAMP-sensing receptors in sterile inflammation and inflammatory diseases. Nat. Rev. Immunol. 20, 95–112 (2020).

Article  PubMed  Google Scholar 

Langseth, M. S. et al. Double-stranded DNA and NETs components in relation to clinical outcome after ST-elevation myocardial infarction. Sci. Rep. 10, 5007 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Hanata, N. et al. Serum extracellular traps associate with the activation of myeloid cells in SLE patients with the low level of anti-DNA antibodies. Sci. Rep. 12, 18397 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Lesouhaitier, M. et al. Neutrophil function and bactericidal activity against Staphylococcus aureus after cardiac surgery with cardiopulmonary bypass. J. Leukoc. Biol. 111, 867–876 (2022).

Article  PubMed  Google Scholar 

Gessler, P., Pfenninger, J., Pfammatter, J. P., Carrel, T. & Dahinden, C. Inflammatory response of neutrophil granulocytes and monocytes after cardiopulmonary bypass in pediatric cardiac surgery. Intensiv. Care Med. 28, 1786–1791 (2002).

Article  Google Scholar 

Narasaraju, T. et al. Excessive neutrophils and neutrophil extracellular traps contribute to acute lung injury of influenza pneumonitis. Am. J. Pathol. 179, 199–210 (2011).

Article  PubMed  PubMed Central  Google Scholar 

Hidalgo, A. et al. Neutrophil extracellular traps: from physiology to pathology. Cardiovasc. Res. 118, 2737–2753 (2022).

Article  PubMed  Google Scholar 

Block H., Rossaint J., Zarbock A. The fatal circle of NETs and NET-Associated DAMPs contributing to organ dysfunction. Cells. 11, 1919 (2022).

Iba, T., Levi, M. & Levy, J. H. Sepsis-induced coagulopathy and disseminated intravascular coagulation. Semin Thromb. Hemost. 46, 89–95 (2020).

Article  PubMed  Google Scholar 

Pircher, J., Engelmann, B., Massberg, S. & Schulz, C. Platelet-neutrophil crosstalk in atherothrombosis. Thromb. Haemost. 119, 1274–1282 (2019).

Article  PubMed  Google Scholar 

Mandel J., Casari M., Stepanyan M., Martyanov A., Deppermann C. Beyond hemostasis: platelet innate immune interactions and thromboinflammation. Int. J. Mol. Sci. 23, 3878 (2022).

Urban, C. F. et al. Neutrophil extracellular traps contain calprotectin, a cytosolic protein complex involved in host defense against Candida albicans. PLoS Pathog. 5, e1000639 (2009).

Article  PubMed  PubMed Central  Google Scholar 

Radermecker C., et al. Neutrophil extracellular traps infiltrate the lung airway, interstitial, and vascular compartments in severe COVID-19. J. Exp. Med. 2020;217.

Döring, Y., Libby, P. & Soehnlein, O. Neutrophil extracellular traps participate in cardiovascular diseases: recent experimental and clinical insights. Circ. Res. 126, 1228–1241 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Iba, T. et al. Potential diagnostic markers for disseminated intravascular coagulation of sepsis. Blood Rev. 30, 149–155 (2016).

Article  PubMed  Google Scholar 

McDonald, B. et al. Platelets and neutrophil extracellular traps collaborate to promote intravascular coagulation during sepsis in mice. Blood 129, 1357–1367 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Vogel, S. et al. Platelet-derived HMGB1 is a critical mediator of thrombosis. J. Clin. Invest. 125, 4638–4654 (2015).

Article  PubMed  PubMed Central  Google Scholar 

Zarbock, A., Polanowska-Grabowska, R. K. & Ley, K. Platelet-neutrophil-interactions: linking hemostasis and inflammation. Blood Rev. 21, 99–111 (2007).

Article  PubMed  Google Scholar 

Fuchs, T. A., Bhandari, A. A. & Wagner, D. D. Histones induce rapid and profound thrombocytopenia in mice. Blood 118, 3708–3714 (2011).

Article  PubMed  PubMed Central  Google Scholar 

Gould, T. J., Lysov, Z. & Liaw, P. C. Extracellular DNA and histones: double-edged swords in immunothrombosis. J. Thromb. Haemost. 13, S82–S91 (2015).

Article  PubMed  Google Scholar 

Papayannopoulos, V., Metzler, K. D., Hakkim, A. & Zychlinsky, A. Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. J. Cell Biol. 191, 677–691 (2010).

Article  PubMed  PubMed Central  Google Scholar 

Silvestre-Roig, C., Fridlender, Z. G., Glogauer, M. & Scapini, P. Neutrophil diversity in health and disease. Trends Immunol. 40, 565–583 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Comments (0)

No login
gif