Emerging role and function of Hippo-YAP/TAZ signaling pathway in musculoskeletal disorders

Dong J, et al. <ArticleTitle Language=“En”>Elucidation of a universal size-control mechanism in Drosophila and mammals. Cell. 2007;130(6):1120–33.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Fu V, Plouffe SW, Guan KL. The Hippo pathway in organ development, homeostasis, and regeneration. Curr Opin Cell Biol. 2017;49:99–107.

Article  PubMed  CAS  Google Scholar 

Wu S, et al. hippo encodes a Ste-20 family protein kinase that restricts cell proliferation and promotes apoptosis in conjunction with salvador and warts. Cell. 2003;114(4):445–56.

Article  PubMed  CAS  Google Scholar 

Zhao B, et al. A coordinated phosphorylation by Lats and CK1 regulates YAP stability through SCF(beta-TRCP). Genes Dev. 2010;24(1):72–85.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Liu CY, et al. The hippo tumor pathway promotes TAZ degradation by phosphorylating a phosphodegron and recruiting the SCF-TrCP E3 ligase. J Biol Chem. 2010;285(48):37159–69.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Liang N, et al. Regulation of YAP by mTOR and autophagy reveals a therapeutic target of tuberous sclerosis complex. J Exp Med. 2014;211(11):2249–63.

Article  PubMed  PubMed Central  Google Scholar 

Kwon Y, et al. The Hippo signaling pathway interactome. Science. 2013;342(6159):737–40.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Plouffe SW, Hong AW, Guan KL. Disease implications of the Hippo/YAP pathway. Trends Mol Med. 2015;21(4):212–22.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Haffner-Luntzer M, et al. Wnt1 Boosts Fracture Healing by Enhancing Bone Formation in the Fracture Callus. J Bone Min Res. 2023;38(5):749–64.

Article  CAS  Google Scholar 

Poon CL, et al. The sterile 20-like kinase Tao-1 controls tissue growth by regulating the Salvador-Warts-Hippo pathway. Dev Cell. 2011;21(5):896–906.

Article  PubMed  CAS  Google Scholar 

Zhang N, et al. The Merlin/NF2 tumor suppressor functions through the YAP oncoprotein to regulate tissue homeostasis in mammals. Dev Cell. 2010;19(1):27–38.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Gómez-Galán M, et al. Musculoskeletal disorders: OWAS review. Ind Health. 2017;55(4):314–37.

Article  PubMed  PubMed Central  Google Scholar 

Briggs AM, et al. Reducing the global burden of musculoskeletal conditions. Bull World Health Organ. 2018;96(5):366–8.

Article  PubMed  PubMed Central  Google Scholar 

Lewis R, et al. Strategies for optimising musculoskeletal health in the 21(st) century. BMC Musculoskelet Disord. 2019;20(1):164.

Article  PubMed  PubMed Central  Google Scholar 

Pan JX, et al. YAP promotes osteogenesis and suppresses adipogenic differentiation by regulating β-catenin signaling. Bone Res. 2018;6:18.

Article  PubMed  PubMed Central  Google Scholar 

Yang B, et al. YAP1 inhibits the induction of TNF-α-stimulated bone-resorbing mediators by suppressing the NF-κB signaling pathway in MC3T3-E1 cells. J Cell Physiol. 2020;235(5):4698–708.

Article  PubMed  CAS  Google Scholar 

Deng Y, et al. Yap1 Regulates Multiple Steps of Chondrocyte Differentiation during Skeletal Development and Bone Repair. Cell Rep. 2016;14(9):2224–37.

Article  PubMed  CAS  Google Scholar 

Jeong H, et al. TAZ as a novel enhancer of MyoD-mediated myogenic differentiation. Faseb j. 2010;24(9):3310–20.

Article  PubMed  CAS  Google Scholar 

Zhang YH, et al. The role and clinical significance of YES-associated protein 1 in human osteosarcoma. Int J Immunopathol Pharmacol. 2013;26(1):157–67.

Article  PubMed  CAS  Google Scholar 

Zhang HT, et al. Sequential targeting of YAP1 and p21 enhances the elimination of senescent cells induced by the BET inhibitor JQ1. Cell Death Dis. 2021;12(1):121.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Oristian KM, et al. Loss of MST/Hippo Signaling in a Genetically Engineered Mouse Model of Fusion-Positive Rhabdomyosarcoma Accelerates Tumorigenesis. Cancer Res. 2018;78(19):5513–20.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Deel MD, et al. The Transcriptional Coactivator TAZ Is a Potent Mediator of Alveolar Rhabdomyosarcoma Tumorigenesis. Clin Cancer Res. 2018;24(11):2616–30.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Mohamed A, et al. The Hippo effector TAZ (WWTR1) transforms myoblasts and TAZ abundance is associated with reduced survival in embryonal rhabdomyosarcoma. J Pathol. 2016;240(1):3–14.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Yang W, et al. TAZ inhibits osteoclastogenesis by attenuating TAK1/NF-κB signaling. Bone Res. 2021;9(1):33.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Li Y, Yang S, Yang S. Verteporfin Inhibits the Progression of Spontaneous Osteosarcoma Caused by Trp53 and Rb1 Deficiency in Ctsk-Expressing Cells via Impeding Hippo Pathway. Cells, 2022. 11(8).

Sanna L, et al. Verteporfin exhibits anti-proliferative activity in embryonal and alveolar rhabdomyosarcoma cell lines. Chem Biol Interact. 2019;312:108813.

Article  PubMed  CAS  Google Scholar 

Piccolo S, Dupont S, Cordenonsi M. The biology of YAP/TAZ: hippo signaling and beyond. Physiol Rev. 2014;94(4):1287–312.

Article  PubMed  CAS  Google Scholar 

Wu Z, Guan KL. Hippo Signaling in Embryogenesis and Development. Trends Biochem Sci. 2021;46(1):51–63.

Article  PubMed  CAS  Google Scholar 

Bae SJ, Luo X. Activation mechanisms of the Hippo kinase signaling cascade. Biosci Rep, 2018. 38(4).

Zhao B, et al. Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev. 2007;21(21):2747–61.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Meng Z, Moroishi T, Guan KL. Mechanisms of Hippo pathway regulation. Genes Dev. 2016;30(1):1–17.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Riley SE, Feng Y, Hansen CG. Hippo-Yap/Taz signalling in zebrafish regeneration. NPJ Regen Med. 2022;7(1):9.

Article  PubMed  PubMed Central  Google Scholar 

Comments (0)

No login
gif