Dong J, et al. <ArticleTitle Language=“En”>Elucidation of a universal size-control mechanism in Drosophila and mammals. Cell. 2007;130(6):1120–33.
Article PubMed PubMed Central CAS Google Scholar
Fu V, Plouffe SW, Guan KL. The Hippo pathway in organ development, homeostasis, and regeneration. Curr Opin Cell Biol. 2017;49:99–107.
Article PubMed CAS Google Scholar
Wu S, et al. hippo encodes a Ste-20 family protein kinase that restricts cell proliferation and promotes apoptosis in conjunction with salvador and warts. Cell. 2003;114(4):445–56.
Article PubMed CAS Google Scholar
Zhao B, et al. A coordinated phosphorylation by Lats and CK1 regulates YAP stability through SCF(beta-TRCP). Genes Dev. 2010;24(1):72–85.
Article PubMed PubMed Central CAS Google Scholar
Liu CY, et al. The hippo tumor pathway promotes TAZ degradation by phosphorylating a phosphodegron and recruiting the SCF-TrCP E3 ligase. J Biol Chem. 2010;285(48):37159–69.
Article PubMed PubMed Central CAS Google Scholar
Liang N, et al. Regulation of YAP by mTOR and autophagy reveals a therapeutic target of tuberous sclerosis complex. J Exp Med. 2014;211(11):2249–63.
Article PubMed PubMed Central Google Scholar
Kwon Y, et al. The Hippo signaling pathway interactome. Science. 2013;342(6159):737–40.
Article PubMed PubMed Central CAS Google Scholar
Plouffe SW, Hong AW, Guan KL. Disease implications of the Hippo/YAP pathway. Trends Mol Med. 2015;21(4):212–22.
Article PubMed PubMed Central CAS Google Scholar
Haffner-Luntzer M, et al. Wnt1 Boosts Fracture Healing by Enhancing Bone Formation in the Fracture Callus. J Bone Min Res. 2023;38(5):749–64.
Poon CL, et al. The sterile 20-like kinase Tao-1 controls tissue growth by regulating the Salvador-Warts-Hippo pathway. Dev Cell. 2011;21(5):896–906.
Article PubMed CAS Google Scholar
Zhang N, et al. The Merlin/NF2 tumor suppressor functions through the YAP oncoprotein to regulate tissue homeostasis in mammals. Dev Cell. 2010;19(1):27–38.
Article PubMed PubMed Central CAS Google Scholar
Gómez-Galán M, et al. Musculoskeletal disorders: OWAS review. Ind Health. 2017;55(4):314–37.
Article PubMed PubMed Central Google Scholar
Briggs AM, et al. Reducing the global burden of musculoskeletal conditions. Bull World Health Organ. 2018;96(5):366–8.
Article PubMed PubMed Central Google Scholar
Lewis R, et al. Strategies for optimising musculoskeletal health in the 21(st) century. BMC Musculoskelet Disord. 2019;20(1):164.
Article PubMed PubMed Central Google Scholar
Pan JX, et al. YAP promotes osteogenesis and suppresses adipogenic differentiation by regulating β-catenin signaling. Bone Res. 2018;6:18.
Article PubMed PubMed Central Google Scholar
Yang B, et al. YAP1 inhibits the induction of TNF-α-stimulated bone-resorbing mediators by suppressing the NF-κB signaling pathway in MC3T3-E1 cells. J Cell Physiol. 2020;235(5):4698–708.
Article PubMed CAS Google Scholar
Deng Y, et al. Yap1 Regulates Multiple Steps of Chondrocyte Differentiation during Skeletal Development and Bone Repair. Cell Rep. 2016;14(9):2224–37.
Article PubMed CAS Google Scholar
Jeong H, et al. TAZ as a novel enhancer of MyoD-mediated myogenic differentiation. Faseb j. 2010;24(9):3310–20.
Article PubMed CAS Google Scholar
Zhang YH, et al. The role and clinical significance of YES-associated protein 1 in human osteosarcoma. Int J Immunopathol Pharmacol. 2013;26(1):157–67.
Article PubMed CAS Google Scholar
Zhang HT, et al. Sequential targeting of YAP1 and p21 enhances the elimination of senescent cells induced by the BET inhibitor JQ1. Cell Death Dis. 2021;12(1):121.
Article PubMed PubMed Central CAS Google Scholar
Oristian KM, et al. Loss of MST/Hippo Signaling in a Genetically Engineered Mouse Model of Fusion-Positive Rhabdomyosarcoma Accelerates Tumorigenesis. Cancer Res. 2018;78(19):5513–20.
Article PubMed PubMed Central CAS Google Scholar
Deel MD, et al. The Transcriptional Coactivator TAZ Is a Potent Mediator of Alveolar Rhabdomyosarcoma Tumorigenesis. Clin Cancer Res. 2018;24(11):2616–30.
Article PubMed PubMed Central CAS Google Scholar
Mohamed A, et al. The Hippo effector TAZ (WWTR1) transforms myoblasts and TAZ abundance is associated with reduced survival in embryonal rhabdomyosarcoma. J Pathol. 2016;240(1):3–14.
Article PubMed PubMed Central CAS Google Scholar
Yang W, et al. TAZ inhibits osteoclastogenesis by attenuating TAK1/NF-κB signaling. Bone Res. 2021;9(1):33.
Article PubMed PubMed Central CAS Google Scholar
Li Y, Yang S, Yang S. Verteporfin Inhibits the Progression of Spontaneous Osteosarcoma Caused by Trp53 and Rb1 Deficiency in Ctsk-Expressing Cells via Impeding Hippo Pathway. Cells, 2022. 11(8).
Sanna L, et al. Verteporfin exhibits anti-proliferative activity in embryonal and alveolar rhabdomyosarcoma cell lines. Chem Biol Interact. 2019;312:108813.
Article PubMed CAS Google Scholar
Piccolo S, Dupont S, Cordenonsi M. The biology of YAP/TAZ: hippo signaling and beyond. Physiol Rev. 2014;94(4):1287–312.
Article PubMed CAS Google Scholar
Wu Z, Guan KL. Hippo Signaling in Embryogenesis and Development. Trends Biochem Sci. 2021;46(1):51–63.
Article PubMed CAS Google Scholar
Bae SJ, Luo X. Activation mechanisms of the Hippo kinase signaling cascade. Biosci Rep, 2018. 38(4).
Zhao B, et al. Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev. 2007;21(21):2747–61.
Article PubMed PubMed Central CAS Google Scholar
Meng Z, Moroishi T, Guan KL. Mechanisms of Hippo pathway regulation. Genes Dev. 2016;30(1):1–17.
Article PubMed PubMed Central CAS Google Scholar
Riley SE, Feng Y, Hansen CG. Hippo-Yap/Taz signalling in zebrafish regeneration. NPJ Regen Med. 2022;7(1):9.
Comments (0)