Bulk-RNA and single-nuclei RNA seq analyses reveal the role of lactate metabolism-related genes in Alzheimer’s disease

Alzheimer's disease facts and figures 2023 (2023) 2023 Alzheimer's disease facts and figures. Alzheimers Dement 19(4):1598–1695.https://doi.org/10.1002/alz.13016

Ayton S, Portbury S, Kalinowski P, Agarwal P, Diouf I, Schneider JA et al (2021) Regional brain iron associated with deterioration in Alzheimer’s disease: a large cohort study and theoretical significance. Alzheimers Dement 17(7):1244–1256. https://doi.org/10.1002/alz.12282

Article  PubMed  Google Scholar 

Babetto E, Wong KM, Beirowski B (2020) A glycolytic shift in Schwann cells supports injured axons. Nat Neurosci 23(10):1215–1228. https://doi.org/10.1038/s41593-020-0689-4

Article  CAS  PubMed  PubMed Central  Google Scholar 

Baik SH, Kang S, Lee W, Choi H, Chung S, Kim JI et al (2019) A breakdown in metabolic reprogramming causes microglia dysfunction in Alzheimer’s disease. Cell Metab 30(3):493–507 e6. https://doi.org/10.1016/j.cmet.2019.06.005

Article  CAS  PubMed  Google Scholar 

Boland B, Yu WH, Corti O, Mollereau B, Henriques A, Bezard E et al (2018) Promoting the clearance of neurotoxic proteins in neurodegenerative disorders of ageing. Nat Rev Drug Discov 17(9):660–688. https://doi.org/10.1038/nrd.2018.109

Article  CAS  PubMed  PubMed Central  Google Scholar 

Butterfield DA, Halliwell B (2019) Oxidative stress, dysfunctional glucose metabolism and Alzheimer disease. Nat Rev Neurosci 20(3):148–160. https://doi.org/10.1038/s41583-019-0132-6

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chang H, Xu Q, Li J, Li M, Zhang Z, Ma H et al (2021) Lactate secreted by PKM2 upregulation promotes Galectin-9-mediated immunosuppression via inhibiting NF-kappaB pathway in HNSCC. Cell Death Dis 12(8):725. https://doi.org/10.1038/s41419-021-03990-4

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cohn W, Melnik M, Huang C, Teter B, Chandra S, Zhu C et al (2021) Multi-omics analysis of microglial extracellular vesicles from human Alzheimer’s disease brain tissue reveals disease-associated signatures. Front Pharmacol 12:766082. https://doi.org/10.3389/fphar.2021.766082

Article  CAS  PubMed  PubMed Central  Google Scholar 

da Costa IB, de Labio RW, Rasmussen LT, Viani GA, Chen E, Villares J et al (2017) Change in INSR, APBA2 and IDE gene expressions in brains of Alzheimer’s disease patients. Curr Alzheimer Res 14(7):760–765. https://doi.org/10.2174/1567205014666170203100734

Article  CAS  PubMed  Google Scholar 

Dang Y, He Q, Yang S, Sun H, Liu Y, Li W et al (2022) FTH1- and SAT1-Induced astrocytic ferroptosis is involved in Alzheimer’s disease: evidence from single-cell transcriptomic analysis. Pharmaceuticals (Basel) 15(10):1177. https://doi.org/10.3390/ph15101177

Article  CAS  PubMed  Google Scholar 

Du Y, Chen L, Jiao Y, Cheng Y (2019) Cerebrospinal fluid and blood Abeta levels in Down syndrome patients with and without dementia: a meta-analysis study. Aging (Albany NY) 11(24):12202–12212. https://doi.org/10.18632/aging.102560

Article  CAS  PubMed  Google Scholar 

Jia L, Liao M, Mou A, Zheng Q, Yang W, Yu Z et al (2021) Rheb-regulated mitochondrial pyruvate metabolism of Schwann cells linked to axon stability. Dev Cell 56(21):2980–94 e6. https://doi.org/10.1016/j.devcel.2021.09.013

Article  CAS  PubMed  Google Scholar 

Kellar D, Craft S (2020) Brain insulin resistance in Alzheimer’s disease and related disorders: mechanisms and therapeutic approaches. Lancet Neurol 19(9):758–766. https://doi.org/10.1016/S1474-4422(20)30231-3

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li X, Yang Y, Zhang B, Lin X, Fu X, An Y et al (2022) Lactate metabolism in human health and disease. Signal Transduct Target Ther 7(1):305. https://doi.org/10.1038/s41392-022-01151-3

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu X, Nie L, Zhang Y, Yan Y, Wang C, Colic M et al (2023) Actin cytoskeleton vulnerability to disulfide stress mediates disulfidptosis. Nat Cell Biol 25(3):404–414. https://doi.org/10.1038/s41556-023-01091-2

Article  CAS  PubMed  PubMed Central  Google Scholar 

Long HZ, Cheng Y, Zhou ZW, Luo HY, Wen DD, Gao LC (2021) PI3K/AKT signal pathway: a target of natural products in the prevention and treatment of Alzheimer’s disease and Parkinson’s disease. Front Pharmacol 12:648636. https://doi.org/10.3389/fphar.2021.648636

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ma S, Wang D, Xie D (2023) Identification of disulfidptosis-related genes and subgroups in Alzheimer’s disease. Front Aging Neurosci 15:1236490. https://doi.org/10.3389/fnagi.2023.1236490

Article  CAS  PubMed  PubMed Central  Google Scholar 

Monsorno K, Buckinx A, Paolicelli RC (2022) Microglial metabolic flexibility: emerging roles for lactate. Trends Endocrinol Metab 33(3):186–195. https://doi.org/10.1016/j.tem.2021.12.001

Article  CAS  PubMed  Google Scholar 

Moreno-Yruela C, Zhang D, Wei W, Baek M, Liu W, Gao J et al (2022) Class I histone deacetylases (HDAC1-3) are histone lysine delactylases. Sci Adv. 8(3):eabi6696. https://doi.org/10.1126/sciadv.abi6696

Article  CAS  PubMed  PubMed Central  Google Scholar 

Moujalled D, Strasser A, Liddell JR (2021) Molecular mechanisms of cell death in neurological diseases. Cell Death Differ 28(7):2029–2044. https://doi.org/10.1038/s41418-021-00814-y

Article  PubMed  PubMed Central  Google Scholar 

Nagao H, Jayavelu AK, Cai W, Pan H, Dreyfuss JM, Batista TM et al (2023) Unique ligand and kinase-independent roles of the insulin receptor in regulation of cell cycle, senescence and apoptosis. Nat Commun 14(1):57. https://doi.org/10.1038/s41467-022-35693-5

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pan RY, He L, Zhang J, Liu X, Liao Y, Gao J et al (2022) Positive feedback regulation of microglial glucose metabolism by histone H4 lysine 12 lactylation in Alzheimer’s disease. Cell Metab. 34(4):634–48 e6. https://doi.org/10.1016/j.cmet.2022.02.013

Article  CAS  PubMed  Google Scholar 

Perkins M, Wolf AB, Chavira B, Shonebarger D, Meckel JP, Leung L et al (2016) Altered energy metabolism pathways in the posterior cingulate in young adult apolipoprotein E varepsilon4 carriers. J Alzheimers Dis 53(1):95–106. https://doi.org/10.3233/JAD-151205

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ramasubbu K, Devi RV (2023) Impairment of insulin signaling pathway PI3K/Akt/mTOR and insulin resistance induced AGEs on diabetes mellitus and neurodegenerative diseases: a perspective review. Mol Cell Biochem 478(6):1307–1324. https://doi.org/10.1007/s11010-022-04587-x

Article  CAS  PubMed  Google Scholar 

Rhea EM, Leclerc M, Yassine HN, Capuano AW, Tong H, Petyuk VA et al (2023) State of the science on brain insulin resistance and cognitive decline due to Alzheimer’s disease. Aging Dis. https://doi.org/10.14336/AD.2023.0814

Article  Google Scholar 

Ryan SK, Zelic M, Han Y, Teeple E, Chen L, Sadeghi M et al (2023) Microglia ferroptosis is regulated by SEC24B and contributes to neurodegeneration. Nat Neurosci 26(1):12–26. https://doi.org/10.1038/s41593-022-01221-3

Article  CAS  PubMed  Google Scholar 

Saltiel AR, Kahn CR (2001) Insulin signalling and the regulation of glucose and lipid metabolism. Nature 414(6865):799–806. https://doi.org/10.1038/414799a

Article  CAS  PubMed 

Comments (0)

No login
gif