Relationship between microvascular status and diagnostic performance of stress dynamic CT perfusion imaging

Miller JM, Rochitte CE, Dewey M et al (2008) Diagnostic performance of coronary angiography by 64-row CT. N Engl J Med 359:2324–2336

Article  CAS  PubMed  Google Scholar 

Schuijf JD, Wijns W, Jukema JW et al (2006) Relationship between noninvasive coronary angiography with multi-slice computed tomography and myocardial perfusion imaging. J Am Coll Cardiol 48:2508–2514

Article  PubMed  Google Scholar 

Nakamura S, Kitagawa K, Goto Y et al (2019) Incremental prognostic value of myocardial blood flow quantified with stress dynamic computed tomography perfusion imaging. JACC Cardiovasc Imaging 12:1379–1387

Article  PubMed  Google Scholar 

Kitagawa K, Goto Y, Nakamura S et al (2018) Dynamic CT perfusion imaging: state of the art. CVIA 2:38–48

Google Scholar 

Celeng C, Leiner T, Maurovich-Horvat P et al (2019) Anatomical and functional computed tomography for diagnosing hemodynamically significant coronary artery disease: a meta-analysis. JACC Cardiovasc Imaging 12:1316–1325

Article  PubMed  Google Scholar 

Kitagawa K, Nakamura S, Ota H et al (2021) Diagnostic performance of dynamic myocardial perfusion imaging using dual-source computed tomography. J Am Coll Cardiol 78:1937–1949

Article  PubMed  Google Scholar 

Mahnken AH, Klotz E, Pietsch H et al (2010) Quantitative whole heart stress perfusion CT imaging as noninvasive assessment of hemodynamics in coronary artery stenosis: preliminary animal experience. Invest Radiol 45:298–305

Article  PubMed  Google Scholar 

Bamberg F, Hinkel R, Schwarz F et al (2012) Accuracy of dynamic computed tomography adenosine stress myocardial perfusion imaging in estimating myocardial blood flow at various degrees of coronary artery stenosis using a porcine animal model. Invest Radiol 47:71–77

Article  PubMed  Google Scholar 

Rossi A, Uitterdijk A, Dijkshoorn M et al (2013) Quantification of myocardial blood flow by adenosine-stress CT perfusion imaging in pigs during various degrees of stenosis correlates well with coronary artery blood flow and fractional flow reserve. Eur Heart J Cardiovasc Imaging 14:331–338

Article  PubMed  Google Scholar 

Rossi A, Wragg A, Klotz E et al (2017) Dynamic computed tomography myocardial perfusion imaging. Circ Cardiovasc Imaging 10:e005505

Article  PubMed  Google Scholar 

Cerci RJ, Arbab-Zadeh A, George RT et al (2012) Aligning coronary anatomy and myocardial perfusion territories: an algorithm for the CORE320 multicenter study. Circ Cardiovasc Imaging 5:587–595

Article  PubMed  Google Scholar 

Min JK, Shaw LJ, Devereux RB et al (2007) Prognostic value of multidetector coronary computed tomographic angiography for prediction of all-cause mortality. J Am Coll Cardiol 50:1161–1170

Article  PubMed  Google Scholar 

Haase R, Schlattmann P, Gueret P et al (2019) Diagnosis of obstructive coronary artery disease using computed tomography angiography in patients with stable chest pain depending on clinical probability and in clinically important subgroups: meta-analysis of individual patient data. BMJ 365:l1945

Article  PubMed Central  PubMed  Google Scholar 

Knuuti J, Wijns W, Saraste A et al (2019) 2019 ESC guidelines for the diagnosis and management of chronic coronary syndromes: the Task force for the diagnosis and management of chronic coronary syndromes of the European Society of Cardiology (ESC). Eur Heart J 41:407–477

Article  Google Scholar 

Bamberg F, Becker A, Schwarz F et al (2011) Detection of hemodynamically significant coronary artery stenosis: incremental diagnostic value of dynamic CT-based myocardial perfusion imaging. Radiology 260:689–698

Article  PubMed  Google Scholar 

Greif M, von Ziegler F, Bamberg F et al (2013) CT stress perfusion imaging for detection of haemodynamically relevant coronary stenosis as defined by FFR. Heart 99:1004–1011

Article  PubMed  Google Scholar 

Rossi A, Dharampal A, Wragg A et al (2014) Diagnostic performance of hyperaemic myocardial blood flow index obtained by dynamic computed tomography: Does it predict functionally significant coronary lesions? Eur Heart J Cardiovasc Imaging 15:85–94

Article  PubMed  Google Scholar 

Lu M, Wang S, Sirajuddin A et al (2018) Dynamic stress computed tomography myocardial perfusion for detecting myocardial ischemia: a systematic review and meta-analysis. Int J Cardiol 258:325–331

Article  PubMed  Google Scholar 

Li Y, Yu M, Dai X et al (2019) Detection of hemodynamically significant coronary stenosis: CT myocardial perfusion versus machine learning CT fractional flow reserve. Radiology 293:305–314

Article  PubMed  Google Scholar 

Rossi A, Wragg A, Klotz E et al (2017) Dynamic computed tomography myocardial perfusion imaging: comparison of clinical analysis methods for the detection of vessel-specific ischemia. Circ Cardiovasc Imaging 10:e005505

Article  PubMed  Google Scholar 

Nous FM, Geisler T, Kruk MB et al (2022) Dynamic myocardial perfusion CT for the detection of hemodynamically significant coronary artery disease. JACC Cardiovasc Imaging 15:75–87

Article  PubMed  Google Scholar 

Lyu L, Pan J, Li D et al (2022) Knowledge of hyperemic myocardial blood flow in healthy subjects helps identify myocardial ischemia in patients with coronary artery disease. Front Cardiovasc Med 9:817911

Article  PubMed Central  PubMed  Google Scholar 

Yang J, Dou G, He B et al (2020) Stress myocardial blood flow ratio by dynamic CT perfusion identifies hemodynamically significant CAD. JACC Cardiovasc Imaging 13:966–976

Article  PubMed  Google Scholar 

Danad I, Raijmakers PG, Appelman YE et al (2012) Coronary risk factors and myocardial blood flow in patients evaluated for coronary artery disease: a quantitative [15O]H2O PET/CT study. Eur J Nucl Med Mol Imaging 39:102–112

Article  PubMed  Google Scholar 

Liga R, Rovai D, Sampietro T et al (2013) Insulin resistance is a major determinant of myocardial blood flow impairment in anginal patients. Eur J Nucl Med Mol Imaging 40:1905–1913

Article  CAS  Google Scholar 

Wichmann JL, Meinel FG, Schoepf UJ et al (2015) Absolute versus relative myocardial blood flow by dynamic CT myocardial perfusion imaging in patients with anatomic coronary artery disease. AJR Am J Roentgenol 205:W67–W72

Article  PubMed  Google Scholar 

Kono AK, Coenen A, Lubbers M et al (2014) Relative myocardial blood flow by dynamic computed tomographic perfusion imaging predicts hemodynamic significance of coronary stenosis better than absolute blood flow. Invest Radiol 49:801–807

Article  PubMed  Google Scholar 

Rochitte CE, George RT, Chen MY et al (2014) Computed tomography angiography and perfusion to assess coronary artery stenosis causing perfusion defects by single photon emission computed tomography: the CORE320 study. Eur Heart J 35:1120–1130

Article  PubMed  Google Scholar 

Comments (0)

No login
gif