Tet1-mediated activation of the Ampk signaling by Trpv1 DNA hydroxymethylation exerts neuroprotective effects in a rat model of Parkinson’s disease

Alvarez-Fischer D et al (2013) Bee venom and its component apamin as neuroprotective agents in a Parkinson disease mouse model. PLoS ONE 8:e61700. https://doi.org/10.1371/journal.pone.0061700

Article  PubMed  PubMed Central  CAS  Google Scholar 

Balleza-Tapia H et al. (2018) TrpV1 receptor activation rescues neuronal function and network gamma oscillations from Abeta-induced impairment in mouse hippocampus in vitro Elife 7 https://doi.org/10.7554/eLife.37703

Bujak JK, Kosmala D, Szopa IM, Majchrzak K, Bednarczyk P (2019) Inflammation, Cancer and Immunity-Implication of TRPV1 Channel. Front Oncol 9:1087. https://doi.org/10.3389/fonc.2019.01087

Article  PubMed  PubMed Central  Google Scholar 

Castrejon-Tellez V et al. (2022) TRPV1 Contributes to Modulate the Nitric Oxide Pathway and Oxidative Stress in the Isolated and Perfused Rat Heart during Ischemia and Reperfusion. Molecules 27 https://doi.org/10.3390/molecules27031031

Cheng Q et al (2021) Pyrroloquinoline quinone promotes mitochondrial biogenesis in rotenone-induced Parkinson’s disease model via AMPK activation. Acta Pharmacol Sin 42:665–678. https://doi.org/10.1038/s41401-020-0487-2

Article  PubMed  CAS  Google Scholar 

Cordero-Llana O et al (2015) Enhanced efficacy of the CDNF/MANF family by combined intranigral overexpression in the 6-OHDA rat model of Parkinson’s disease. Mol Ther 23:244–254. https://doi.org/10.1038/mt.2014.206

Article  PubMed  CAS  Google Scholar 

Curry DW, Stutz B, Andrews ZB, Elsworth JD (2018) Targeting AMPK Signaling as a Neuroprotective Strategy in Parkinson’s Disease. J Parkinsons Dis 8:161–181. https://doi.org/10.3233/JPD-171296

Article  PubMed  PubMed Central  Google Scholar 

Chung YC et al (2017) Capsaicin prevents degeneration of dopamine neurons by inhibiting glial activation and oxidative stress in the MPTP model of Parkinson's disease. Exp Mol Med 49:e298. https://doi.org/10.1038/emm.2016.159

Delatte B et al (2015) Genome-Wide Hydroxymethylcytosine Pattern Changes in Response to Oxidative Stress. Sci Rep 5:12714. https://doi.org/10.1038/srep12714

Article  PubMed  PubMed Central  CAS  Google Scholar 

Dorsey ER, Bloem BR (2018) The Parkinson Pandemic-A Call to Action. JAMA Neurol 75:9–10. https://doi.org/10.1001/jamaneurol.2017.3299

Article  PubMed  Google Scholar 

Fan H et al (2021) Heat shock protein 22 modulates NRF1/TFAM-dependent mitochondrial biogenesis and DRP1-sparked mitochondrial apoptosis through AMPK-PGC1alpha signaling pathway to alleviate the early brain injury of subarachnoid hemorrhage in rats. Redox Biol 40:101856. https://doi.org/10.1016/j.redox.2021.101856

Article  PubMed  PubMed Central  CAS  Google Scholar 

Feng ST, Wang ZZ, Yuan YH, Sun HM, Chen NH, Zhang Y (2021) Update on the association between alpha-synuclein and tau with mitochondrial dysfunction: Implications for Parkinson’s disease. Eur J Neurosci 53:2946–2959. https://doi.org/10.1111/ejn.14699

Article  PubMed  Google Scholar 

Garcia-Amado M, Prensa L (2012) Stereological analysis of neuron, glial and endothelial cell numbers in the human amygdaloid complex. PLoS One 7:e38692. https://doi.org/10.1371/journal.pone.0038692

Article  PubMed  PubMed Central  CAS  Google Scholar 

Gerecke C, Egea Rodrigues C, Homann T, Kleuser B (2022) The Role of Ten-Eleven Translocation Proteins in Inflammation. Front Immunol 13:861351. https://doi.org/10.3389/fimmu.2022.861351

Article  PubMed  PubMed Central  CAS  Google Scholar 

Gou P, Qi X, Yuan R, Li H, Gao X, Wang J, Zhang B (2018) Tet1-mediated DNA demethylation involves in neuron damage induced by bilirubin in vitro. Toxicol Mech Methods 28:55–61 https://doi.org/10.1080/15376516.2017.1357775

Gu XS et al (2016) Neuroprotective Effects of Paeoniflorin on 6-OHDA-Lesioned Rat Model of Parkinson’s Disease. Neurochem Res 41:2923–2936. https://doi.org/10.1007/s11064-016-2011-0

Article  PubMed  CAS  Google Scholar 

Guhathakurta S, Song MK, Basu S, Je G, Cristovao AC, Kim YS (2022) Regulation of Alphalpha-Synuclein Gene (SNCA) by Epigenetic Modifier TET1 in Parkinson Disease. Int Neurourol J 26:S85-93. https://doi.org/10.5213/inj.2222206.103

Article  PubMed  PubMed Central  Google Scholar 

He XB et al (2015) Vitamin C facilitates dopamine neuron differentiation in fetal midbrain through TET1- and JMJD3-dependent epigenetic control manner. Stem Cells 33:1320–1332. https://doi.org/10.1002/stem.1932

Article  PubMed  CAS  Google Scholar 

He S et al (2024) Downregulation of Ambra1 by altered DNA methylation exacerbates dopaminergic neuron damage in a fenpropathrin-induced Parkinson-like mouse model. Ecotoxicol Environ Saf 271:115995. https://doi.org/10.1016/j.ecoenv.2024.115995

Article  PubMed  CAS  Google Scholar 

Hemmati-Dinarvand M et al (2019) Oxidative stress and Parkinson’s disease: conflict of oxidant-antioxidant systems. Neurosci Lett 709:134296. https://doi.org/10.1016/j.neulet.2019.134296

Article  PubMed  CAS  Google Scholar 

Hernandez-Baltazar D, Zavala-Flores LM, Villanueva-Olivo A (2017) The 6-hydroxydopamine model and parkinsonian pathophysiology: Novel findings in an older model. Neurologia 32:533–539. https://doi.org/10.1016/j.nrl.2015.06.011

Article  PubMed  CAS  Google Scholar 

Hritcu L, Foyet HS, Stefan M, Mihasan M, Asongalem AE, Kamtchouing P (2011) Neuroprotective effect of the methanolic extract of Hibiscus asper leaves in 6-hydroxydopamine-lesioned rat model of Parkinson’s disease. J Ethnopharmacol 137:585–591. https://doi.org/10.1016/j.jep.2011.06.008

Article  PubMed  Google Scholar 

Huang T, Lin Y, Pang Q, Shen W, Chen X, Tu F (2021) The Synergistic Effect of TRPV1 on Oxidative Stress-Induced Autophagy and Apoptosis in Microglia. Anal Cell Pathol (Amst) 2021:7955791. https://doi.org/10.1155/2021/7955791

Article  PubMed  CAS  Google Scholar 

Joshi K, Liu S, Breslin SJP, Zhang J (2022) Mechanisms that regulate the activities of TET proteins. Cell Mol Life Sci 79:363. https://doi.org/10.1007/s00018-022-04396-x

Article  PubMed  PubMed Central  CAS  Google Scholar 

Kolesova YS, Stroylova YY, Maleeva EE, Moysenovich AM, Pozdyshev DV, Muronetz VI, Andreev YA (2023) Modulation of TRPV1 and TRPA1 Channels Function by Sea Anemones' Peptides Enhances the Viability of SH-SY5Y Cell Model of Parkinson's Disease. Int J Mol Sci 25 https://doi.org/10.3390/ijms25010368

Liu Y, Zhang L, Xu ZH, Zhu J, Ma JL, Gao YP, Xu GY (2022) Increased ten-eleven translocation methylcytosine dioxygenase one in dorsal root ganglion contributes to inflammatory pain in CFA rats. Mol Pain 18:17448069221143672. https://doi.org/10.1177/17448069221143671

Article  PubMed  PubMed Central  CAS  Google Scholar 

Maiese K (2017) Warming Up to New Possibilities with the Capsaicin Receptor TRPV1: mTOR. AMPK, and Erythropoietin Curr Neurovasc Res 14:184–189. https://doi.org/10.2174/1567202614666170313105337

Article  PubMed  CAS  Google Scholar 

Min S et al (2022) Altered hydroxymethylome in the substantia nigra of Parkinson’s disease. Hum Mol Genet 31:3494–3503. https://doi.org/10.1093/hmg/ddac122

Article  PubMed  PubMed Central  CAS  Google Scholar 

Nam JH et al (2015) TRPV1 on astrocytes rescues nigral dopamine neurons in Parkinson’s disease via CNTF. Brain 138:3610–3622. https://doi.org/10.1093/brain/awv297

Article  PubMed  PubMed Central  Google Scholar 

Pakrashi S, Chakraborty J, Bandyopadhyay J (2024) Quercetin alleviates 6-OHDA-caused apoptosis in SH-SY5Y cells Toxicol Res (Camb) 13:tfae117 https://doi.org/10.1093/toxres/tfae117

Park ES, Kim SR, Jin BK (2012) Transient receptor potential vanilloid subtype 1 contributes to mesencephalic dopaminergic neuronal survival by inhibiting microglia-originated oxidative stress. Brain Res Bull 89:92–96. https://doi.org/10.1016/j.brainresbull.2012.07.001

Poewe W et al (2017) Parkinson Disease. Nat Rev Dis Primers 3:17013. https://doi.org/10.1038/nrdp.2017.13

Article  PubMed  Google Scholar 

Shu L et al (2019) Genetic analysis of DNA methylation and hydroxymethylation genes in Parkinson’s disease. Neurobiol Aging 84:242. https://doi.org/10.1016/j.neurobiolaging.2019.02.025

Article  CAS 

Comments (0)

No login
gif