Alvarez-Fischer D et al (2013) Bee venom and its component apamin as neuroprotective agents in a Parkinson disease mouse model. PLoS ONE 8:e61700. https://doi.org/10.1371/journal.pone.0061700
Article PubMed PubMed Central CAS Google Scholar
Balleza-Tapia H et al. (2018) TrpV1 receptor activation rescues neuronal function and network gamma oscillations from Abeta-induced impairment in mouse hippocampus in vitro Elife 7 https://doi.org/10.7554/eLife.37703
Bujak JK, Kosmala D, Szopa IM, Majchrzak K, Bednarczyk P (2019) Inflammation, Cancer and Immunity-Implication of TRPV1 Channel. Front Oncol 9:1087. https://doi.org/10.3389/fonc.2019.01087
Article PubMed PubMed Central Google Scholar
Castrejon-Tellez V et al. (2022) TRPV1 Contributes to Modulate the Nitric Oxide Pathway and Oxidative Stress in the Isolated and Perfused Rat Heart during Ischemia and Reperfusion. Molecules 27 https://doi.org/10.3390/molecules27031031
Cheng Q et al (2021) Pyrroloquinoline quinone promotes mitochondrial biogenesis in rotenone-induced Parkinson’s disease model via AMPK activation. Acta Pharmacol Sin 42:665–678. https://doi.org/10.1038/s41401-020-0487-2
Article PubMed CAS Google Scholar
Cordero-Llana O et al (2015) Enhanced efficacy of the CDNF/MANF family by combined intranigral overexpression in the 6-OHDA rat model of Parkinson’s disease. Mol Ther 23:244–254. https://doi.org/10.1038/mt.2014.206
Article PubMed CAS Google Scholar
Curry DW, Stutz B, Andrews ZB, Elsworth JD (2018) Targeting AMPK Signaling as a Neuroprotective Strategy in Parkinson’s Disease. J Parkinsons Dis 8:161–181. https://doi.org/10.3233/JPD-171296
Article PubMed PubMed Central Google Scholar
Chung YC et al (2017) Capsaicin prevents degeneration of dopamine neurons by inhibiting glial activation and oxidative stress in the MPTP model of Parkinson's disease. Exp Mol Med 49:e298. https://doi.org/10.1038/emm.2016.159
Delatte B et al (2015) Genome-Wide Hydroxymethylcytosine Pattern Changes in Response to Oxidative Stress. Sci Rep 5:12714. https://doi.org/10.1038/srep12714
Article PubMed PubMed Central CAS Google Scholar
Dorsey ER, Bloem BR (2018) The Parkinson Pandemic-A Call to Action. JAMA Neurol 75:9–10. https://doi.org/10.1001/jamaneurol.2017.3299
Fan H et al (2021) Heat shock protein 22 modulates NRF1/TFAM-dependent mitochondrial biogenesis and DRP1-sparked mitochondrial apoptosis through AMPK-PGC1alpha signaling pathway to alleviate the early brain injury of subarachnoid hemorrhage in rats. Redox Biol 40:101856. https://doi.org/10.1016/j.redox.2021.101856
Article PubMed PubMed Central CAS Google Scholar
Feng ST, Wang ZZ, Yuan YH, Sun HM, Chen NH, Zhang Y (2021) Update on the association between alpha-synuclein and tau with mitochondrial dysfunction: Implications for Parkinson’s disease. Eur J Neurosci 53:2946–2959. https://doi.org/10.1111/ejn.14699
Garcia-Amado M, Prensa L (2012) Stereological analysis of neuron, glial and endothelial cell numbers in the human amygdaloid complex. PLoS One 7:e38692. https://doi.org/10.1371/journal.pone.0038692
Article PubMed PubMed Central CAS Google Scholar
Gerecke C, Egea Rodrigues C, Homann T, Kleuser B (2022) The Role of Ten-Eleven Translocation Proteins in Inflammation. Front Immunol 13:861351. https://doi.org/10.3389/fimmu.2022.861351
Article PubMed PubMed Central CAS Google Scholar
Gou P, Qi X, Yuan R, Li H, Gao X, Wang J, Zhang B (2018) Tet1-mediated DNA demethylation involves in neuron damage induced by bilirubin in vitro. Toxicol Mech Methods 28:55–61 https://doi.org/10.1080/15376516.2017.1357775
Gu XS et al (2016) Neuroprotective Effects of Paeoniflorin on 6-OHDA-Lesioned Rat Model of Parkinson’s Disease. Neurochem Res 41:2923–2936. https://doi.org/10.1007/s11064-016-2011-0
Article PubMed CAS Google Scholar
Guhathakurta S, Song MK, Basu S, Je G, Cristovao AC, Kim YS (2022) Regulation of Alphalpha-Synuclein Gene (SNCA) by Epigenetic Modifier TET1 in Parkinson Disease. Int Neurourol J 26:S85-93. https://doi.org/10.5213/inj.2222206.103
Article PubMed PubMed Central Google Scholar
He XB et al (2015) Vitamin C facilitates dopamine neuron differentiation in fetal midbrain through TET1- and JMJD3-dependent epigenetic control manner. Stem Cells 33:1320–1332. https://doi.org/10.1002/stem.1932
Article PubMed CAS Google Scholar
He S et al (2024) Downregulation of Ambra1 by altered DNA methylation exacerbates dopaminergic neuron damage in a fenpropathrin-induced Parkinson-like mouse model. Ecotoxicol Environ Saf 271:115995. https://doi.org/10.1016/j.ecoenv.2024.115995
Article PubMed CAS Google Scholar
Hemmati-Dinarvand M et al (2019) Oxidative stress and Parkinson’s disease: conflict of oxidant-antioxidant systems. Neurosci Lett 709:134296. https://doi.org/10.1016/j.neulet.2019.134296
Article PubMed CAS Google Scholar
Hernandez-Baltazar D, Zavala-Flores LM, Villanueva-Olivo A (2017) The 6-hydroxydopamine model and parkinsonian pathophysiology: Novel findings in an older model. Neurologia 32:533–539. https://doi.org/10.1016/j.nrl.2015.06.011
Article PubMed CAS Google Scholar
Hritcu L, Foyet HS, Stefan M, Mihasan M, Asongalem AE, Kamtchouing P (2011) Neuroprotective effect of the methanolic extract of Hibiscus asper leaves in 6-hydroxydopamine-lesioned rat model of Parkinson’s disease. J Ethnopharmacol 137:585–591. https://doi.org/10.1016/j.jep.2011.06.008
Huang T, Lin Y, Pang Q, Shen W, Chen X, Tu F (2021) The Synergistic Effect of TRPV1 on Oxidative Stress-Induced Autophagy and Apoptosis in Microglia. Anal Cell Pathol (Amst) 2021:7955791. https://doi.org/10.1155/2021/7955791
Article PubMed CAS Google Scholar
Joshi K, Liu S, Breslin SJP, Zhang J (2022) Mechanisms that regulate the activities of TET proteins. Cell Mol Life Sci 79:363. https://doi.org/10.1007/s00018-022-04396-x
Article PubMed PubMed Central CAS Google Scholar
Kolesova YS, Stroylova YY, Maleeva EE, Moysenovich AM, Pozdyshev DV, Muronetz VI, Andreev YA (2023) Modulation of TRPV1 and TRPA1 Channels Function by Sea Anemones' Peptides Enhances the Viability of SH-SY5Y Cell Model of Parkinson's Disease. Int J Mol Sci 25 https://doi.org/10.3390/ijms25010368
Liu Y, Zhang L, Xu ZH, Zhu J, Ma JL, Gao YP, Xu GY (2022) Increased ten-eleven translocation methylcytosine dioxygenase one in dorsal root ganglion contributes to inflammatory pain in CFA rats. Mol Pain 18:17448069221143672. https://doi.org/10.1177/17448069221143671
Article PubMed PubMed Central CAS Google Scholar
Maiese K (2017) Warming Up to New Possibilities with the Capsaicin Receptor TRPV1: mTOR. AMPK, and Erythropoietin Curr Neurovasc Res 14:184–189. https://doi.org/10.2174/1567202614666170313105337
Article PubMed CAS Google Scholar
Min S et al (2022) Altered hydroxymethylome in the substantia nigra of Parkinson’s disease. Hum Mol Genet 31:3494–3503. https://doi.org/10.1093/hmg/ddac122
Article PubMed PubMed Central CAS Google Scholar
Nam JH et al (2015) TRPV1 on astrocytes rescues nigral dopamine neurons in Parkinson’s disease via CNTF. Brain 138:3610–3622. https://doi.org/10.1093/brain/awv297
Article PubMed PubMed Central Google Scholar
Pakrashi S, Chakraborty J, Bandyopadhyay J (2024) Quercetin alleviates 6-OHDA-caused apoptosis in SH-SY5Y cells Toxicol Res (Camb) 13:tfae117 https://doi.org/10.1093/toxres/tfae117
Park ES, Kim SR, Jin BK (2012) Transient receptor potential vanilloid subtype 1 contributes to mesencephalic dopaminergic neuronal survival by inhibiting microglia-originated oxidative stress. Brain Res Bull 89:92–96. https://doi.org/10.1016/j.brainresbull.2012.07.001
Poewe W et al (2017) Parkinson Disease. Nat Rev Dis Primers 3:17013. https://doi.org/10.1038/nrdp.2017.13
Shu L et al (2019) Genetic analysis of DNA methylation and hydroxymethylation genes in Parkinson’s disease. Neurobiol Aging 84:242. https://doi.org/10.1016/j.neurobiolaging.2019.02.025
Comments (0)