Macrophage membrane coated discoidal polymeric particles for evading phagocytosis

Din FU, Aman W, Ullah I, Qureshi OS, Mustapha O, Shafique S, Zeb A. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int J Nanomed. 2017;7291-309.

Malhotra S, Dumoga S, Singh N. Red blood cells membrane-derived nanoparticles: Applications and key challenges in their clinical translation. Wiley Interdiscip Rev: Nanomed Nanobiotechnol. 2022;14(3): e1776.

Google Scholar 

Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R. Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov. 2021;20(2):101–24.

Article  Google Scholar 

Afzal O, Altamimi AS, Nadeem MS, Alzarea SI, Almalki WH, Tariq A, Mubeen B, Murtaza BN, Iftikhar S, Riaz N, Kazmi I. Nanoparticles in drug delivery: From history to therapeutic applications. Nanomaterials. 2022;12(24):4494.

Article  Google Scholar 

Lopes J, Lopes D, Pereira-Silva M, Peixoto D, Veiga F, Hamblin MR, Conde J, Corbo C, Zare EN, Ashrafizadeh M, Tay FR. Macrophage cell membrane-cloaked nanoplatforms for biomedical applications. Small Methods. 2022;6(8):2200289.

Article  Google Scholar 

Yusuf A, Almotairy AR, Henidi H, Alshehri OY, Aldughaim MS. Nanoparticles as drug delivery systems: A review of the implication of nanoparticles physicochemical properties on responses in biological systems. Polymers. 2023;15(7):1596.

Article  Google Scholar 

Fang C, Zhang M. Nanoparticle-based theragnostics: Integrating diagnostic and therapeutic potentials in nanomedicine. J Controll Release: Off J Controll Release Soc. 2010;146(1):2.

Article  Google Scholar 

Zhang J, Tang H, Liu Z, Chen B. Effects of major parameters of nanoparticles on their physical and chemical properties and recent application of nanodrug delivery system in targeted chemotherapy. International journal of nanomedicine. 2017;8483-93.

Patra JK, Das G, Fraceto LF, Campos EV, Rodriguez-Torres MD, Acosta-Torres LS, Diaz-Torres LA, Grillo R, Swamy MK, Sharma S, Habtemariam S. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnol. 2018;16:1–33.

Article  Google Scholar 

Park JY, Park S, Lee TS, Hwang YH, Kim JY, Kang WJ, Key J. Biodegradable micro-sized discoidal polymeric particles for lung-targeted delivery system. Biomaterials. 2019;1(218):119331.

Article  Google Scholar 

Decuzzi P, Pasqualini R, Arap W, Ferrari M. Intravascular delivery of particulate systems: does geometry really matter? Pharm Res. 2009;26:235–43.

Article  Google Scholar 

Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol. 2015;33(9):941–51.

Article  Google Scholar 

Suk JS, Xu Q, Kim N, Hanes J, Ensign LM. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Deliv Rev. 2016;1(99):28–51.

Article  Google Scholar 

Hoshyar N, Gray S, Han H, Bao G. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine. 2016;11(6):673–92.

Article  Google Scholar 

Oh JY, Kim HS, Palanikumar L, Go EM, Jana B, Park SA, Kim HY, Kim K, Seo JK, Kwak SK, Kim C. Cloaking nanoparticles with protein corona shield for targeted drug delivery. Nat Commun. 2018;9(1):4548.

Article  Google Scholar 

Saha K, Rahimi M, Yazdani M, Kim ST, Moyano DF, Hou S, Das R, Mout R, Rezaee F, Mahmoudi M, Rotello VM. Regulation of macrophage recognition through the interplay of nanoparticle surface functionality and protein corona. ACS Nano. 2016;10(4):4421–30.

Article  Google Scholar 

Chen D, Ganesh S, Wang W, Amiji M. Protein corona-enabled systemic delivery and targeting of nanoparticles. AAPS J. 2020;22:1–9.

Article  Google Scholar 

Zou Y, Ito S, Yoshino F, Suzuki Y, Zhao Li, Komatsu N. Polyglycerol grafting shields nanoparticles from protein corona formation to avoid macrophage uptake. ACS Nano. 2020;14(6):7216–26.

Article  Google Scholar 

Grenier P, de Oliveira Viana IM, Lima EM, Bertrand N. Anti-polyethylene glycol antibodies alter the protein corona deposited on nanoparticles and the physiological pathways regulating their fate in vivo. J Control Release. 2018;10(287):121–31.

Article  Google Scholar 

Fam SY, Chee CF, Yong CY, Ho KL, Mariatulqabtiah AR, Tan WS. Stealth coating of nanoparticles in drug-delivery systems. Nanomaterials. 2020;10(4):787.

Article  Google Scholar 

Jin Q, Deng Y, Chen X, Ji J. Rational design of cancer nanomedicine for simultaneous stealth surface and enhanced cellular uptake. ACS Nano. 2019;13(2):954–77.

Google Scholar 

Schöttler S, Becker G, Winzen S, Steinbach T, Mohr K, Landfester K, Mailänder V, Wurm FR. Protein adsorption is required for stealth effect of poly (ethylene glycol)-and poly (phosphoester)-coated nanocarriers. Nat Nanotechnol. 2016;11(4):372–7.

Article  Google Scholar 

Hadjesfandiari N, Parambath A. Stealth coatings for nanoparticles: Polyethylene glycol alternatives. InEngineering of biomaterials for drug delivery systems 2018 Jan 1 (pp. 345-361). Woodhead Publishing.

Rattan R, Bhattacharjee S, Zong H, Swain C, Siddiqui MA, Visovatti SH, Kanthi Y, Desai S, Pinsky DJ, Goonewardena SN. Nanoparticle-macrophage interactions: A balance between clearance and cell-specific targeting. Bioorg Med Chem. 2017;25(16):4487–96.

Article  Google Scholar 

Tse WH, Gyenis L, Litchfield DW, Zhang J. Cellular interaction influenced by surface modification strategies of gelatin-based nanoparticles. J Biomater Appl. 2017;31(7):1087–96.

Article  Google Scholar 

Sheng Y, Yuan Y, Liu C, Tao X, Shan X, Feng Xu. In vitro macrophage uptake and in vivo biodistribution of PLA–PEG nanoparticles loaded with hemoglobin as blood substitutes: Effect of PEG content. J Mater Sci - Mater Med. 2009;20:1881–91.

Article  Google Scholar 

Hu Y, Hou Y, Wang H, Hua Lu. Polysarcosine as an alternative to PEG for therapeutic protein conjugation. Bioconjug Chem. 2018;29(7):2232–8.

Article  Google Scholar 

Zhang F, Liu M-R, Wan H-T. Discussion about several potential drawbacks of PEGylated therapeutic proteins. Biol Pharm Bull. 2014;37(3):335–9.

Article  Google Scholar 

Pannuzzo M, Esposito S, Wu LP, Key J, Aryal S, Celia C, Di Marzio L, Moghimi SM, Decuzzi P. Overcoming nanoparticle-mediated complement activation by surface PEG pairing. Nano Lett. 2020;20(6):4312–21.

Article  Google Scholar 

Xuan M, Shao J, Li J. Cell membrane-covered nanoparticles as biomaterials. Natl Sci Rev. 2019;6(3):551–61.

Article  Google Scholar 

Piao J-G, Wang L, Gao F, You Y-Z, Xiong Y, Yang L. Erythrocyte membrane is an alternative coating to polyethylene glycol for prolonging the circulation lifetime of gold nanocages for photothermal therapy. ACS Nano. 2014;8(10):10414–25.

Article  Google Scholar 

Hu C-M, Zhang Li, Aryal S, Cheung C, Fang RH, Zhang L. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc Natl Acad Sci. 2011;108(27):10980–5.

Article  Google Scholar 

Pitchaimani A, Nguyen TDT, Aryal S. Natural killer cell membrane infused biomimetic liposomes for targeted tumor therapy. Biomaterials. 2018;160:124–37.

Article  Google Scholar 

Nguyen TD, Aryal S, Pitchaimani A, Park S, Key J, Aryal S. Biomimetic surface modification of discoidal polymeric particles. Nanomed: Nanotechnol Biol Med. 2019;16:79–87.

Article  Google Scholar 

Wei X, Gao J, Fang RH, Luk BT, Kroll AV, Dehaini D, Zhou J, Kim HW, Gao W, Lu W, Zhang L. Nanoparticles camouflaged in platelet membrane coating as an antibody decoy for the treatment of immune thrombocytopenia. Biomaterials. 2016;1(111):116–23.

Article  Google Scholar 

Fang RH, Hu C-M, Luk BT, Gao W, Copp JA, Tai Y, O’Connor DE, Zhang L. Cancer cell membrane-coated nanoparticles for anticancer vaccination and drug delivery. Nano Lett. 2014;14(4):2181–8.

Article  Google Scholar 

Zhang Y, Cai K, Li C, Guo Q, Chen Q, He X, Liu L, Zhang Y, Lu Y, Chen X, Sun T. Macrophage-membrane-coated nanoparticles for tumor-targeted chemotherapy. Nano Lett. 2018;18(3):1908–15.

Article  Google Scholar 

Patel P, Hanini A, Shah A, Patel D, Patel S, Bhatt P, Pathak YV. Surface modification of nanoparticles for targeted drug delivery. Springer International Publishing; 2019; pp. 19-31.

Ben-Akiva E, Meyer RA, Yu H, Smith JT, Pardoll DM, Green JJ. Biomimetic anisotropic polymeric nanoparticles coated with red blood cell membranes for enhanced circulation and toxin removal. Sci Adv. 2020;6(16):eaay9035.

Article  Google Scholar 

Pawar D, Mangal S, Goswami R, Jaganathan KS. Development and characterization of surface modified PLGA nanoparticles for nasal vaccine delivery: effect of mucoadhesive coating on antigen uptake and immune adjuvant activity. Eur J Pharm Biopharm. 2013;85(3):550–9.

Article  Google Scholar 

Verissimo TV, Santos NT, Silva JR, Azevedo RB, Gomes AJ, Lunardi CN. In vitro cytotoxicity and phototoxicity of surface-modified gold nanoparticles associated with neutral red as a potential drug delivery system in phototherapy. Mater Sci Eng, C. 2016;65:199–204.

Article  Google Scholar 

Key J, Aryal S, Gentile F, Ananta JS, Zhong M, Landis MD, Decuzzi P. Engineering discoidal polymeric nanoconstructs with enhanced magneto-optical properties for tumor imaging. Biomaterials. 2013;34:5402–10.

Article  Google Scholar 

Kim SH, Jeong JH, Chun KW, Park TG. Target-specific cellular uptake of PLGA nanoparticles coated with poly (l-lysine)—poly (ethylene glycol)—folate conjugate. Langmuir. 2005;21(19):8852–7.

Article  Google Scholar 

Villanueva-Flores F, Castro-Lugo A, Ramírez OT, Palomares LA. Understanding cellular interactions with nanomaterials: Towards a rational design of medical nanodevices. Nanotechnology. 2020;31(13):132002.

Article  Google Scholar 

Cooley M, Sarode A, Hoore M, Fedosov DA, Mitragotri S, Gupta AS. Influence of particle size and shape on their margination and wall-adhesion: implications in drug delivery vehicle design across nano-to-micro scale. Nanoscale. 2018;10(32):15350–64.

Article  Google Scholar 

Shi L, Zhang J, Zhao M, Shukun Tang Xu, Cheng WZ, Li W, Liu X, Peng H, Wang Q. Effects of polyethylene glycol on the surface of nanoparticles for targeted drug delivery. Nanoscale. 2021;13(24):10748–64.

Article 

Comments (0)

No login
gif