Acar, G., İdiman, F., İdiman, E., Kırkalı, G., Çakmakçı, H., & Özakbaş, S. (2003). Nitric oxide as an activity marker in multiple sclerosis. Journal of Neurology, 250(5), 588–592. https://doi.org/10.1007/s00415-003-1041-0
Article CAS PubMed Google Scholar
Akhtar, M., Chen, Y., Ma, Z., Zhang, X., Shi, D., Khan, J. A., et al. (2022). Gut microbiota-derived short chain fatty acids are potential mediators in gut inflammation. Anim Nutr, 8, 350–360. https://doi.org/10.1016/j.aninu.2021.11.005
Article CAS PubMed Google Scholar
Alexander, C., Swanson, K. S., Fahey, G. C., Jr., & Garleb, K. A. (2019). Perspective: Physiologic importance of short-chain fatty acids from nondigestible carbohydrate fermentation. Advances in Nutrition, 10(4), 576–589.
Article PubMed PubMed Central Google Scholar
Alva-Murillo, N., Ochoa-Zarzosa, A., & López-Meza, J. E. (2012). Short chain fatty acids (propionic and hexanoic) decrease Staphylococcus aureus internalization into bovine mammary epithelial cells and modulate antimicrobial peptide expression. Veterinary Microbiology, 155(2), 324–331. https://doi.org/10.1016/j.vetmic.2011.08.025
Article CAS PubMed Google Scholar
Amato, M., Hakiki, B., Goretti, B., Rossi, F., Stromillo, M. L., Giorgio, A., et al. (2012). Association of MRI metrics and cognitive impairment in radiologically isolated syndromes. Neurology, 78(5), 309–314.
Article CAS PubMed Google Scholar
Amon, P., & Sanderson, I. (2017). What is the microbiome? Archives of Disease in Childhood-Education and Practice, 102(5), 257–260.
Antunes, K. H., Fachi, J. L., de Paula, R., da Silva, E. F., Pral, L. P., dos Santos, A. Á., et al. (2019). Microbiota-derived acetate protects against respiratory syncytial virus infection through a GPR43-type 1 interferon response. Nature Communications, 10(1), 3273. https://doi.org/10.1038/s41467-019-11152-6
Article CAS PubMed PubMed Central Google Scholar
Aoyama, M., Kotani, J., & Usami, M. (2010a). Butyrate and propionate induced activated or non-activated neutrophil apoptosis via HDAC inhibitor activity but without activating GPR-41/GPR-43 pathways. Nutrition, 26(6), 653–661. https://doi.org/10.1016/j.nut.2009.07.006
Article CAS PubMed Google Scholar
Aoyama, M., Kotani, J., & Usami, M. (2010b). Butyrate and propionate induced activated or non-activated neutrophil apoptosis via HDAC inhibitor activity but without activating GPR-41/GPR-43 pathways. Nutrition, 26(6), 653–661.
Article CAS PubMed Google Scholar
Arora, T., Sharma, R., & Frost, G. (2011). Propionate. Anti-obesity and satiety enhancing factor? Appetite, 56(2), 511–515.
Arpaia, N., Campbell, C., Fan, X., Dikiy, S., Van Der Veeken, J., Deroos, P., et al. (2013a). Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature, 504(7480), 451–455.
Article CAS PubMed PubMed Central Google Scholar
Arpaia, N., Campbell, C., Fan, X., Dikiy, S., van der Veeken, J., deRoos, P., et al. (2013b). Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature, 504(7480), 451–455. https://doi.org/10.1038/nature12726
Article CAS PubMed PubMed Central Google Scholar
Artis, D., & Spits, H. (2015). The biology of innate lymphoid cells. Nature, 517(7534), 293–301. https://doi.org/10.1038/nature14189
Article CAS PubMed Google Scholar
Baars, A., Oosting, A., Lohuis, M., Koehorst, M., El Aidy, S., Hugenholtz, F., et al. (2018). Sex differences in lipid metabolism are affected by presence of the gut microbiota. Scientific Reports, 8(1), 13426.
Article PubMed PubMed Central Google Scholar
Backhed, F., Manchester, J., Semenkovich, C., & Gordon, J. I. (2007). Mechanisms underlying the resistance to diet induced obesity in germ-free mice. Proceedings of the National Academy of Sciences, 104, 979–984.
Baecher-Allan, C., Kaskow, B. J., & Weiner, H. L. (2018). Multiple sclerosis: Mechanisms and immunotherapy. Neuron, 97(4), 742–768.
Article CAS PubMed Google Scholar
Bailey, S. L., Schreiner, B., McMahon, E. J., & Miller, S. D. (2007). CNS myeloid DCs presenting endogenous myelin peptides “preferentially” polarize CD4+ T(H)-17 cells in relapsing EAE. Nature Immunology, 8(2), 172–180. https://doi.org/10.1038/ni1430
Article CAS PubMed Google Scholar
Balashov, K. E., Comabella, M., Ohashi, T., Khoury, S. J., & Weiner, H. L. (2000). Defective regulation of IFNγ and IL-12 by endogenous IL-10 in progressive MS. Neurology, 55(2), 192–198.
Article CAS PubMed Google Scholar
Beecham, A. H., Patsopoulos, N. A., Xifara, D. K., Davis, M. F., Kemppinen, A., Cotsapas, C., et al. (2013). Analysis of immune-related loci identifies 48 new susceptibility variants for multiple sclerosis. Nature Genetics, 45(11), 1353–1360. https://doi.org/10.1038/ng.2770
Article CAS PubMed PubMed Central Google Scholar
Benedek, G., Zhang, J., Nguyen, H., Kent, G., Seifert, H. A., Davin, S., et al. (2017). Estrogen protection against EAE modulates the microbiota and mucosal-associated regulatory cells. Journal of Neuroimmunology, 310, 51–59.
Article CAS PubMed PubMed Central Google Scholar
Berndt, B. E., Zhang, M., Owyang, S. Y., Cole, T. S., Wang, T. W., Luther, J., et al. (2012). Butyrate increases IL-23 production by stimulated dendritic cells. American Journal of Physiology. Gastrointestinal and Liver Physiology, 303(12), G1384-1392. https://doi.org/10.1152/ajpgi.00540.2011
Article CAS PubMed PubMed Central Google Scholar
Bernink, J. H., Peters, C. P., Munneke, M., Te Velde, A. A., Meijer, S. L., Weijer, K., et al. (2013). Human type 1 innate lymphoid cells accumulate in inflamed mucosal tissues. Nature Immunology, 14(3), 221–229.
Article CAS PubMed Google Scholar
Bert, S., Nadkarni, S., & Perretti, M. (2023). Neutrophil-T cell crosstalk and the control of the host inflammatory response. Immunological Reviews, 314(1), 36–49.
Article CAS PubMed Google Scholar
Bolnick, D. I., Snowberg, L. K., Hirsch, P. E., Lauber, C. L., Org, E., Parks, B., et al. (2014). Individual diet has sex-dependent effects on vertebrate gut microbiota. Nature Communications, 5(1), 4500.
Article CAS PubMed Google Scholar
Bourassa, M. W., Alim, I., Bultman, S. J., & Ratan, R. R. (2016). Butyrate, neuroepigenetics and the gut microbiome: Can a high fiber diet improve brain health? Neuroscience Letters, 625, 56–63.
Article CAS PubMed PubMed Central Google Scholar
Brown, E. M., Allsopp, P. J., Magee, P. J., Gill, C. I., Nitecki, S., Strain, C. R., et al. (2014). Seaweed and human health. Nutrition Reviews, 72(3), 205–216.
Browne, P., Chandraratna, D., Angood, C., Tremlett, H., Baker, C., Taylor, B. V., et al. (2014). Atlas of Multiple Sclerosis 2013: A growing global problem with widespread inequity. Neurology, 83(11), 1022–1024. https://doi.org/10.1212/wnl.0000000000000768
Article PubMed PubMed Central Google Scholar
Burokas, A., Arboleya, S., Moloney, R. D., Peterson, V. L., Murphy, K., Clarke, G., et al. (2017). Targeting the microbiota-gut-brain axis: Prebiotics have anxiolytic and antidepressant-like effects and reverse the impact of chronic stress in mice. Biological Psychiatry, 82(7), 472–487.
Article CAS PubMed Google Scholar
Calvo-Barreiro, L., Eixarch, H., Cornejo, T., Costa, C., Castillo, M., Mestre, L., et al. (2021). Selected clostridia strains from the human microbiota and their metabolite, butyrate improve experimental autoimmune encephalomyelitis. Neurotherapeutics, 18(2), 920–937.
Comments (0)